首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of the paper is to present a new global optimization method for determining all the optima of the Least Squares Method (LSM) problem of pairwise comparison matrices. Such matrices are used, e.g., in the Analytic Hierarchy Process (AHP). Unlike some other distance minimizing methods, LSM is usually hard to solve because of the corresponding nonlinear and non-convex objective function. It is found that the optimization problem can be reduced to solve a system of polynomial equations. Homotopy method is applied which is an efficient technique for solving nonlinear systems. The paper ends by two numerical example having multiple global and local minima. This research was supported in part by the Hungarian Scientific Research Fund, Grant No. OTKA K 60480.  相似文献   

2.
3.
Pairwise comparison matrices are frequently applied in multi-criteria decision making. A weight vector is called efficient if no other weight vector is at least as good in approximating the elements of the pairwise comparison matrix, and strictly better in at least one position. A weight vector is weakly efficient if the pairwise ratios cannot be improved in all non-diagonal positions. We show that the principal eigenvector is always weakly efficient, but numerical examples show that it can be inefficient. The linear programs proposed test whether a given weight vector is (weakly) efficient, and in case of (strong) inefficiency, an efficient (strongly) dominating weight vector is calculated. The proposed algorithms are implemented in Pairwise Comparison Matrix Calculator, available at pcmc.online.  相似文献   

4.
In several methods of multiattribute decision making, pairwise comparison matrices are applied to derive implicit weights for a given set of decision alternatives. A class of the approaches is based on the approximation of the pairwise comparison matrix by a consistent matrix. In the paper this approximation problem is considered in the least-squares sense. In general, the problem is nonconvex and difficult to solve, since it may have several local optima. In the paper the classic logarithmic transformation is applied and the problem is transcribed into the form of a separable programming problem based on a univariate function with special properties. We give sufficient conditions of the convexity of the objective function over the feasible set. If such a sufficient condition holds, the global optimum of the original problem can be obtained by local search, as well. For the general case, we propose a branch-and-bound method. Computational experiments are also presented.  相似文献   

5.
Some multiple-criteria decision making methods rank actions by associating weights to the different criteria or actions, which are pairwise compared via a positive reciprocal matrix A. There is a vast literature on proposals of different mathematical-programming methods to infer weights from such matrix A. However, it is seldom observed that such optimization problems may be multimodal, thus the standard local-search resolution techniques suggested may be trapped in local optima, yielding a wrong ranking of alternatives. In this note we show that standard tools of global optimization based on interval analysis, lead to globally optimal weights in reasonable time.  相似文献   

6.
We study properties of weight extraction methods for pairwise comparison matrices that minimize suitable measures of inconsistency, ‘average error gravity’ measures, including one that leads to the geometric row means. The measures share essential global properties with the AHP inconsistency measure. By embedding the geometric mean in a larger class of methods we shed light on the choice between it and its traditional AHP competitor, the principal right eigenvector. We also suggest how to assess the extent of inconsistency by developing an alternative to the Random Consistency Index, which is not based on random comparison matrices, but based on judgemental error distributions. We define and discuss natural invariance requirements and show that the minimizers of average error gravity generally satisfy them, except a requirement regarding the order in which matrices and weights are synthesized. Only the geometric row mean satisfies this requirement also. For weight extraction we recommend the geometric mean.  相似文献   

7.
Pairwise comparison is a popular method for establishing the relative importance of n objects. Its main purpose is to get a set of weights (priority vector) associated with the objects. When the information gathered from the decision maker does not verify some rational properties, it is not easy to search the priority vector. Goal programming is a flexible tool for addressing this type of problem. In this paper, we focus on a group decision-making scenario. Thus, we analyze different methodologies for getting a collective priority vector. The first method is to aggregate general pairwise comparison matrices (i.e., matrices without suitable properties) and then get the priority vector from the consensus matrix. The second method proposes to get the collective priority vector by formulating an optimization problem without determining the consensus pairwise comparison matrix beforehand.  相似文献   

8.
This paper examines the problem of extracting object or attribute weights from a pairwise comparison ratio matrix. This problem is approached from the point of view of a distance measure on the space of all such matrices. A set of axioms is presented which such a distance measure should satisfy, and the uniqueness of the measure is proven. The problem of weight derivation is then shown to be equivalent to that of finding a totally transitive matrix which is a minimum distance from the given matrix. This problem reduces to a goal programming model. Finally, it is shown that the problem of weight derivation is related to that of ranking players in a round robin tournament. The space of all binary tournament matrices is proven to be isometric to a subset of the space of ratio matrices.  相似文献   

9.
In a recent study, Choo and Wedley proposed a framework to categorize and conduct simulations to compare methods for deriving preference values from pairwise comparison matrices. This study demonstrates that some pairs in the examined methods are identical and some methods can be solved in better ways. Additionally, the simulations of Choo and Wedley are somewhat idealized. Thus, this study provides additional simulations. The simulation results lead to different method ranking and conclusions from those of Choo and Wedley.  相似文献   

10.
This paper is a continuation of our 2004 paper “Max-algebra and pairwise comparison matrices”, in which the max-eigenvector of a symmetrically reciprocal matrix was used to approximate such a matrix by a transitive matrix. This approximation was based on minimizing the maximal relative error. In a later paper by Dahl a different error measure was used and led to a slightly different approximating transitive matrix. Here some geometric properties of this approximation problem are discussed. These lead, among other results, to a new characterization of a max-eigenvector of an irreducible nonnegative matrix. The case of Toeplitz matrices is discussed in detail, and an application to music theory that uses Toeplitz symmetrically reciprocal matrices is given.  相似文献   

11.
设S={x1,x2,...,xn}是由n个不同的正整数组成的集合,并设a为正整数.如果一个n阶矩阵的第i行j列元素是S中元素xi和xj的最大公因子的a次幂(xi,xj)a,则称该矩阵为定义在S上的a次幂最大公因子(GCD)矩阵,用(Sa)表示;类似定义a次幂LCM矩阵[Sa].如果存在{1,2,...,n}上的一个置换σ使得xσ(1)|xσ(2)|···|xσ(n),则称S为一个因子链.如果存在正整数k,使得S=S1∪S2∪···∪Sk,其中每一个Si(1ik)均为一个因子链,并且对所有的1i=jk,Si中的每个元素与Sj中的每个元素互素,则称S由有限个互素因子链构成.本文中,设S由有限个互素的因子链构成,并且1∈S.我们首先给出幂GCD矩阵与幂LCM矩阵的行列式的公式,然后证明:如果a|b,则det(Sa)|det(Sb),det[Sa]|det[Sb],det(Sa)|det[Sb].最后我们指出:如果构成S的有限个因子链不互素,则此结论一般不成立.  相似文献   

12.
A Pairwise Comparison Matrix (PCM) has been used to compute for relative priorities of elements and are integral components in widely applied decision making tools: the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network Process (ANP). However, PCMs suffer from several issues limiting their applications to large-scale decision problems. These limitations can be attributed to the curse of dimensionality, that is, a large number of pairwise comparisons need to be elicited from a decision maker. This issue results to inconsistent preferences due to the limited cognitive powers of decision makers. To address these limitations, this research proposes a PCM decomposition methodology that reduces the elicited pairwise comparisons. A binary integer program is proposed to intelligently decompose a PCM into several smaller subsets using interdependence scores among elements. Since the subsets are disjoint, the most independent pivot element is identified to connect all subsets to derive the global weights of the elements from the original PCM. As a result, the number of pairwise comparison is reduced and consistency is of the comparisons is improved. The proposed decomposition methodology is applied to both AHP and ANP to demonstrate its advantages.  相似文献   

13.
The problem of deriving weights from ratio-scale matrices in an analytic hierarchy process (AHP) is addressed by researchers worldwide. There are various ways to solve the problem that are generally grouped into simple matrix and optimization methods. All methods have received criticism regarding the accuracy of derived weights, and different criteria are in use to compare the weights obtained from different methods. Because the set of Pareto non-dominated solutions (weights) is unknown and for inconsistent matrices is indefinite, a bi-criterion optimization approach is proposed for manipulating such matrices. The problem-specific evolution strategy algorithm (ESA) is implemented for a robust stochastic search over a feasible indefinite solution space. The fitness function is defined as a scalar vector function composed of the common error measure, i.e. the Euclidean distance and a minimum violation error that accounts for no violation of the rank ordering. The encoding scheme and other components of the search engine are adjusted to preserve the imposed constraints related to the required normalized values of the weights. The solutions generated by the proposed approach are compared with solutions obtained by five well-known prioritization techniques for three judgment matrices taken from the literature. In these and other test applications, the prioritization method that uses the entitled weights estimation by evolution strategy algorithm (WEESA) appears to be superior to other methods if only two, the most commonly used methods, are applied: the Euclidean distance and minimum violation exclusion criteria.  相似文献   

14.
Crisp comparison matrices lead to crisp weight vectors being generated. Accordingly, an interval comparison matrix should give an interval weight estimate. In this paper, a goal programming (GP) method is proposed to obtain interval weights from an interval comparison matrix, which can be either consistent or inconsistent. The interval weights are assumed to be normalized and can be derived from a GP model at a time. The proposed GP method is also applicable to crisp comparison matrices. Comparisons with an interval regression analysis method are also made. Three numerical examples including a multiple criteria decision-making (MCDM) problem with a hierarchical structure are examined to show the potential applications of the proposed GP method.  相似文献   

15.
Principal eigenvectors of adjacency matrices are often adopted as measures of centrality for a graph or digraph. However, previous principal-eigenvector-like measures for a digraph usually consider only the strongly connected component whose adjacency submatrix has the largest eigenvalue. In this paper, for each and every strongly connected component in a digraph, we add weights to diagonal elements of its member nodes in the adjacency matrix such that the modified matrix will have the new unique largest eigenvalue and corresponding principal eigenvectors. Consequently, we use the new principal eigenvectors of the modified matrices, based on different strongly connected components, not only to compose centrality measures but also to identify bowtie structures for a digraph.  相似文献   

16.
This paper presents a statistical method for comparison of two groups of real-valued data, based on nonparametric predictive inference (NPI), with the tails of the data possibly terminated, leading to small values being left-censored and large values being right-censored. Such tails termination can occur due to several reasons, including limits of detection, consideration of outliers, and specific designs of experiments. NPI is a statistical approach based on few assumptions, with inferences strongly based on data and with uncertainty quantified via lower and upper probabilities. We present NPI lower and upper probabilities for the event that the value of a future observation from one group is less than the value of a future observation from the other group, and we discuss several special cases that relate to well-known statistical problems.  相似文献   

17.
We propose an algorithm for solving the inverse eigenvalue problem for real symmetric block Toeplitz matrices with symmetric Toeplitz blocks. It is based upon an algorithm which has been used before by others to solve the inverse eigenvalue problem for general real symmetric matrices and also for Toeplitz matrices. First we expose the structure of the eigenvectors of the so-called generalized centrosymmetric matrices. Then we explore the properties of the eigenvectors to derive an efficient algorithm that is able to deliver a matrix with the required structure and spectrum. We have implemented our ideas in a Matlab code. Numerical results produced with this code are included.  相似文献   

18.
19.
In this paper, we discuss semiconvergence of the block SOR method for solving singular linear systems with p-cyclic matrices. Some sufficient conditions for the semiconvergence of the block SOR method for solving a general p-cyclic singular system are proved.  相似文献   

20.
In the inverse scattering problem, it is well-known that subspace migration yields very accurate locations of small perfectly conducting cracks when the applied frequency is known. In contrast, when the applied frequency is unknown, inaccurate locations are identified via subspace migration with wrong frequency data. This phenomenon has been examined experimentally; however, the reason for its occurrence has not been theoretically investigated. In this study, we analyze the mathematical structure of subspace migration with an unknown frequency by establishing a relationship with Bessel functions of order zero of the first kind. The identified structure of subspace migration and the corresponding results of numerical simulations provide reasons for why subspace migration with an unknown frequency yields an inaccurate crack location and ideas for improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号