首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We report on bulk-heterojunction solar cells fabricated based on ternary mixed solutions of two donors of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b’] dithiophene-2, 6-diyl] [3-fluoro-2- [(2-ethylhexyl) carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7) and [N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)] (PCDTBT), and an accepter of [6,6]-phenyl C71 butyric acid methyl ester (PC71BM). The solar cells had a glass/ITO/NiO/PTB7:PCDTBT:PC71BM/LiF/Al structure. Solar cells containing a 1-2% PCDTBT weight fraction showed a noticeable improvement in short circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE). Solar cells with a 2% PCDTBT weight fraction exhibited an open circuit voltage (Voc) of 0.77 V, Jsc of 13 mA/cm2, FF of 0.42, and PCE of 4.23%. Possible mechanisms for the solar cell performance improvement by the introduction of the small amount of PCDTBT in the PTB7:PC71BM active layer was discussed based on the active layer morphology changes and carrier transport mechanisms.  相似文献   

2.
In this work, we report for the first time the improvement of the photovoltaic characteristics of dye-sensitized solar cells (DSSCs) by doping TiO2 with Fe2O3. DSSCs were fabricated using various percentages of Fe2O3-doped TiO2 composite nanoparticles. The Fe2O3-doped DSSCs exhibited a maximum conversion efficiency of 5.76% because of the effective electron transport. DSSCs based on Fe2O3-doped TiO2 films showed better photovoltaic performance than cells fabricated with only TiO2 nanoparticles. This result was attributed to the prevention of recombination between electrons in the TiO2 conduction band with the dye or electrolytes. A mechanism was suggested based on impedance results, which indicated improved electron transport at the interface of the TiO2/dye/electrolyte.  相似文献   

3.
作为新一代低成本、高效率的光伏器件,以有机卤化铅CH3NH3PbX3(MAPbX3,X=Br、I、Cl)为光吸收层的钙钛矿太阳能电池(PSCs)相比于其他类型的光伏器件,具有原料丰富、工艺简单等特点。在较短的时间内,该类电池效率已由3.8%迅速攀升至25.7%,几乎可以媲美商用硅太阳能电池,成为能源应用领域的一颗新星。氧化锌(ZnO)因其具有材料易于加工、电子迁移率高、制造成本低廉且形貌结构多样等优点,被作为该类电池较为重要的一种电子传输层(ETL)而被广为研究。本文主要以不同结构的ZnO纳米薄膜ETL作为研究对象,对其在PSCs中的应用进行了总结,详细介绍了基于不同形貌ZnO纳米结构PSCs的研究进展,分析了该类电池面临的主要问题与解决处理方式,并对未来的发展趋势进行了展望。  相似文献   

4.
Highly ordered TiO2 nanotube arrays (TNAs) fabricated by anodization are very attractive for use in dye-sensitized solar cells (DSSCs), because of their superior charge percolation and slow charge recombination. Highly ordered, vertically aligned TNAs have been prepared by three-step anodic oxidation. In this work, we investigated such strategies for improving the efficiency of DSSCs. Based on one of these approaches, oxide semiconductors in the form of a TNA were used as a novel method for improving electron transport through a film. A solution containing an appropriate amount of TiO2 nanoparticles was prepared, and the mixed slurry was spin-coated on a TNA film. The coated film provided a large surface area for dye adsorption. The DSSCs achieved a light-to-electric energy conversion efficiency of 5.91% under simulated solar irradiation at 100 mW/cm2 (AM 1.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号