首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
A novel microemulsion based on sodium bis(2-ethylhexyl) sulfosuccinate (AOT) was developed for the simultaneous determination of natural and synthetic estrogens by microemulsion EKC (MEEKC). The microemulsion system consisted of 1.4% w/w AOT, 1.0% w/w octane, 7.0% w/w 1-butanol and 90.6% w/w 20 mM sodium salt of 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid (CAPSO) and 10 mM phosphate buffer at pH 12.5. A baseline resolution in the separation of estrone, 17beta-estradiol, estriol, estradiol 17-hemisuccinate, etinilestradiol, estradiol 3-benzoate, and estradiol 17-valerate was achieved in comparison to the traditional MEEKC system with SDS in less than 15 min. The optimized electrophoretic conditions included the use of an uncoated-silica capillary of 60 cm of total length and 75 microm id, an applied voltage of 25 kV, a temperature of 25 degrees C and 214 UV-detection. Parameters of validation such as specificity, linearity, accuracy, LOD, LOQ and robustness were evaluated according to international guidelines. Due to its simplicity, accuracy, and reliability, the proposed method can be an advantageous alternative to the traditional methodologies for the analysis of natural and synthetic estrogens in different pharmaceutical forms.  相似文献   

2.
Abstract

In this paper, the application of a multi-analytical approach for the characterisation of synthetic and natural dyes in a historical textile is presented. The work is focused on a historical dress of a Sicilian noblewoman, dating from about 1865–1870. Firstly, SERS on fibre was performed, in order to individuate the classes of dyes employed. The SERS spectra suggested the presence of two main dyes: mauveine and orcein. In order to confirm these preliminary results, two different extraction protocols were applied. The extracts obtained were analysed by ESI-MS, MALDI-ToF and UHPCL-MS analyses, confirming the SERS results. In particular, the application of the ammonia mild extraction technique allowed to selectively extract the phenoxazonic dyes, separating them already in the extraction step from the synthetic ones. Thanks to this multi-analytical approach, this dress could be considered as one of the first examples of employment of synthetic dyes in association with natural ones.  相似文献   

3.
A novel adsorbent, Fe‐Mn‐Zr metal oxide nanocomposite was synthesized and investigated for removal of methyl orange (MO) and eosin yellow (EY) dyes from binary dye solution. The magnetic nanocomposite has shown surface area of 143.01 m2/g and saturation magnetization of 15.29 emu/g. Optimization was carried out via response surface methodology (RSM) for optimizing process variables, and optimum dye removal of 99.26% and 99.55% were obtained for MO and EY dye, respectively with contact time 62 min, adsorbent dose 0.45 g/l, initial MO concentration 11.0 mg/l, and initial EY concentration 25.0 mg/l. A feed forward back propagation neural network model has shown better prediction ability than RSM model for predicting MO and EY dye removal (%). Adsorption process strictly follows Langmuir isotherm model, and enhanced adsorption capacities of 196.07 and 175.43 mg/g were observed for MO and EY dye, respectively due to synergistic effects of physicochemical properties of trimetal oxides. Surface adsorption and pore diffusions are the mechanisms involved in the adsorption as revealed from kinetic studies.  相似文献   

4.
The complex trans-[PdCl2(2-ethyl-2-oxazoline-κ1N)2] (1) is shown to be an active and oxidatively robust catalyst for C-C bond forming reactions (Heck, Sonogashira, Ullmann, Miyaura-Suzuki, etc.). These reactions can be carried out in air without rigorous solvent/substrate purification and in the absence of additional free ligand. The general methodology described above has been applied to the high yield and regio-selective formation, via Miyaura-Suzuki coupling, of natural and synthetic isoflavones (i.e., isoflavone, 2′-methylisoflavone [7b], 3′-methylisoflavone [7c] and 3′,4′-benzoisoflavone: [7d]). Compounds 7c and 7d are previously unknown. In addition, the synthesis of (E)-tris-O-methylresveratrol and (E)-3,5-dimethoxystilbene is also described; the former is a recognized anti-cancer agent while the latter is a biologically active extract from the bark of the conifer species Pinus armandii. Both of these latter products are produced as a result of a Heck coupling reaction promoted by 1.  相似文献   

5.
Exploration of new natural compounds is of vital significance for drug discovery and development. The conventional approaches by systematic phytochemical isolation are low-efficiency and consume masses of organic solvent. This study presents an integrated strategy that combines offline comprehensive two-dimensional liquid chromatography, hybrid linear ion-trap/Orbitrap mass spectrometry, and NMR analysis (2D LC/LTQ-Orbitrap-MS/NMR), aimed to establish a green protocol for the efficient discovery of new natural molecules. A comprehensive chemical analysis of the total ginsenosides of stems and leaves of Panax ginseng (SLP), a cardiovascular disease medicine, was performed following this strategy. An offline 2D LC system was constructed with an orthogonality of 0.79 and a practical peak capacity of 11,000. The much greener UHPLC separation and LTQ-Orbitrap-MS detection by data-dependent high-energy C-trap dissociation (HCD)/dynamic exclusion were employed for separation and characterization of ginsenosides from thirteen fractionated SLP samples. Consequently, a total of 646 ginsenosides were characterized, and 427 have not been isolated from the genus of Panax L. The ginsenosides identified from SLP exhibited distinct sapogenin diversity and molecular isomerism. NMR analysis was finally employed to verify and offer complementary structural information to MS-oriented characterization. The established 2D LC/LTQ-Orbitrap-MS/NMR approach outperforms the conventional approaches in respect of significantly improved efficiency, much less use of drug materials and organic solvent. The integrated strategy enables a deep investigation on the therapeutic basis of an herbal medicine, and facilitates new compounds discovery in an efficient and environmentally friendly manner as well.  相似文献   

6.
A novel on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system coupled to electrothermal atomic absorption spectrometry (ETAAS) was developed for metal preconcentration in micro-scale, eliminating the laborious and time consuming procedure of phase separation with centrifugation. The potentials of the system were demonstrated for trace lead and cadmium determination in water samples. An appropriate disperser solution which contains the extraction solvent (xylene) and the chelating agent (ammonium pyrrolidine dithiocarbamate) in methanol is mixed on-line with the sample solution (aqueous phase), resulting thus, a cloudy solution, which is consisted of fine droplets of xylene, dispersed throughout the aqueous phase. Three procedures are taking place simultaneously: cloudy solution creation, analyte complex formation and extraction from aqueous phase into the fine droplets of xylene. Subsequently the droplets were retained on the hydrophobic surface of PTFE-turnings into the column. A part of 30 μL of the eluent (methyl isobutyl ketone) was injected into furnace graphite for analyte atomization and quantification. The sampling frequency was 10 h−1, and the obtained enrichment factor was 80 for lead and 34 for cadmium. The detection limit was 10 ng L−1 and 2 ng L−1, while the precision expressed as relative standard deviation (RSD) was 3.8% (at 0.5 μg L−1) and 4.1% (at 0.03 μg L−1) for lead and cadmium respectively. The proposed method was evaluated by analyzing certified reference materials and was applied to the analysis of natural waters.  相似文献   

7.
Huang SW  Tzeng HF 《Electrophoresis》2012,33(3):536-542
A simple and rapid capillary electrophoretic method was developed for simultaneous determination of sub‐micromolar 2′‐deoxycytidine 5′‐diphosphate (dCDP) and 2′‐deoxycytidine 5′‐triphosphate (dCTP) levels in enzyme assays without using radioactively labeled substrates. The separation was performed at 25°C using MES in the BGE as the terminating ion, the chloride ions in the sample buffer as the leading ion, and PEG 4000 in the BGE as the EOF suppressor for sample stacking by transient isotachophoresis (tITP). Several parameters affecting the separation were investigated, including the pH of the BGE, the concentration of sodium chloride in the sample buffer, and the concentrations of MES and PEG 4000 in the running buffer. Good separation with high separation efficiency was achieved within 6 min under optimal conditions. In comparison with the simple CZE method, the present tITP‐CZE method enabled a 150‐fold increase in the injection time without any decrease in resolution and the sensitivity was enhanced up to two orders of magnitude with the new method. The linear range of the method was 0.1–10 μM for dCDP and dCTP. The limits of detection of dCDP and dCTP were 85 and 73 nM, respectively. The proposed method was successfully applied for the activity assay of ribonucleotide reductase from Hep G2 and Sf9 cells.  相似文献   

8.
A highly sensitive, rapid assay method has been developed and validated for the estimation of JI‐101 in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves extraction of JI‐101 and phenacetin (internal standard, IS) from rat plasma with a solid‐phase extraction process. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.30 mL/min on a Prodigy ODS column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 466.1 → 265 for JI‐101 and 180.1 → 110.1 for IS. Method validation and sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 5.03 ng/mL and the linearity range extended from 5.03 to 2014 ng/mL. The intra‐day and inter‐day precisions were in the ranges of 1.17–19.6 and 3.09–10.4%, respectively. This method has been applied to a pharmacokinetic study of JI‐101 in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Substituted N-[2-(vinyloxy)ethyl]pyrroles, prepared in good yield through an allenic or acetylenic carbanion/isothiocyanate one-pot methodology from 2-(vinyloxy)ethyl isothiocyanate and allyloxyallene, methoxyallene, N,N-dimethyl-2-propyn-1-amine, and 3-methoxy-1-(methylsulfanyl)-1-propyne, are smoothly converted into the corresponding N-vinylpyrroles using t-BuOK/DMSO (room temperature). The reaction proceeds via elimination of vinyl alcohol from the N-[2-(vinyloxy)ethyl] substituent and represents a novel approach to N-vinylpyrroles.  相似文献   

10.
We report the synthesis, characterization, and application of [Zn(1,4‐benzenedicarboxylate)(H2O)2]n , Zn(1,4‐benzenedicarboxylate)0.99(NH2‐1,4‐benzenedicarboxylate)0.01(H2O)2]n , [Zn(1,4‐benzenedicarboxylate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n as sorbents for the extraction of multiclass pesticides from coconut palm. Liquid chromatography with ultraviolet diode array detection was used as the analysis technique, and the experiments were performed at one fortification level (0.1 μg/g). The recoveries were 47–67, 51–70, 58–72, and 64–76% for [Zn(1,4‐benzenedicarboxylate)(H2O)2]n , Zn(1,4‐benzenedicarboxylate)0.99(NH2‐1,4‐benzenedicarboxylate)0.01(H2O)2]n , [Zn(1,4‐benzenedicarboxylate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenelate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n , respectively, with relative standard deviation ranging from 1 to 7% (n = 3). Detection and quantification limits were 0.01–0.05 and 0.05–0.2 μg/g, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.01–10.0 μg/g) with r 2 > 0.9991. A direct comparison of [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n with the commercially available neutral alumina showed that [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n was a similar extracting phase for the pesticides investigated.  相似文献   

11.
In this work, a capillary electrophoresis (CE) procedure was developed for the simultaneous determination of a pharmaceutical drug and its counter-ion, namely labetalol hydrochloride. For this purpose, an uncoated fused-silica capillary, a low conductivity background electrolyte (BGE) and a capacitively coupled contactless conductivity detector (C4D) were employed. This detection system is highly sensitive and enables detection of inorganic as well as organic ions unlike with direct UV detection. Moreover, to be able to simultaneously analyze the cationic drug (labetalol+) and its anionic counter-ion (Cl) in the same electrophoretic run without the need of a coated capillary, a dual-opposite end injection was performed. In this technique, the sample is hydrodynamically injected into both ends of the capillary. This method is simple and easy to perform since the different injection steps are automated by the CE software.This novel CE-C4D procedure with dual-opposite end injection has been successfully validated and applied for the analysis of chloride content in an adrenergic antagonist (labetalol hydrochloride). Thus, the hereby developed method has been shown to enable fast (analysis time < 10 min), precise (repeatability of migration times < 0.7% and of corrected-peak areas < 3.3%; n = 6) and rugged analyses for the simultaneous determination of a pharmaceutical drug and its counter-ion.  相似文献   

12.
In this research, a novel KIT-5/Bi2S3-Fe3O4 nanocomposite was prepared. The structure and morphology properties of the nanocomposite were well characterized by XRD, FESEM-EDS-mapping, TEM, and N2 adsorption–desorption. Benefiting from the visible light, the as-prepared KIT-5/Bi2S3-Fe3O4 nanocomposite exhibit significantly improved photocatalytic performance for the degradation of parathion. The optimum photocatalytic efficiency of KIT-5/Bi2S3-Fe3O4 nanocomposite was investigated with the central composite design using Design Expert software. The four critical variables affecting parathion degradation such as the concentration of parathion, pH, irradiation time, and amount of KIT-5/Bi2S3-Fe3O4 nanocatalyst. A polynomial function corresponding to degradation percent was obtained for the experimental data. The results showed that this catalyst has a good performance for the degradation of parathion.  相似文献   

13.
A method for multiblock statistical process control is described, involving the computation of Q and D statistics both for individual blocks and for the overall process using window consensus principal components analysis (WCPCA). The approach overcomes two common problems. The first is a small normal operating conditions (NOC) region, which is done by determining the Q‐statistic limits and D statistics using leave‐one‐out (LOO) residuals and scores, rather than employing the residuals and scores of a single training set model obtained from the entire NOC region. The second overcomes the problem of temporal drift of the process and/or measurement technique by updating the NOC covariance matrix to adapt to normal process changes. The unifying multiblock statistical process control and relevant statistics are adapted to cope with these issues and are illustrated in this paper using CPCA as applied to online high performance liquid chromatography (HPLC) of a three‐stage continuous process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号