首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
相间交界面对非饱和土应力状态的影响   总被引:3,自引:0,他引:3  
刘艳  赵成刚  李舰  蔡国庆 《力学学报》2017,49(2):335-343
非饱和土是一种三相多孔介质,不同相之间的交界面尤其是气液交界面的存在直接影响了非饱和土的宏观行为.首先对土中交界面的形式和作用进行了探讨,指出气液交界面对非饱和土的行为有重要影响,并给出了界面功和气液比表面积的表达式.在已有的非饱和土变形功表达式基础上,引入界面能影响,得到了考虑交界面影响的非饱和土自由能方程.利用所得的自由能方程,给出了考虑交界面影响的非饱和土固相和液相相应的应力变量.对考虑交界面面积的液相流动方程进行了探讨,给出了非平衡条件下的土水特征曲线表达式,指出在平衡条件下土水特征曲线中应当考虑交界面面积的影响,传统土水特征曲线是三维关系在吸力-饱和度平面上的投影.将比表面积与土水特征曲线的关系,利用已有试验数据验证了该表达式的合理性.利用界面面积的表达式计算有效应力,将其与已有试验结果进行对比,表明给出的比表面积表达式可很好地反映实际情况.不同于已有现象学研究,本文推导具有严格的理论基础,研究表明完整的有效应力表达式中应考虑土体内部作用力的影响,其不仅包含基质吸力,同时还包含其他形式的作用力,其大小与界面比表面积有关.该表达式为下一步研究界面效应对土体变形、强度和流动特性的研究提供了基础.  相似文献   

3.
The liquid/vapour phase change of water in soil is involved in many environmental geotechnical processes. In the case of hygroscopic soils, the liquid water is strongly adsorbed on the solid phase and this particular thermodynamic state can highly influence the phase change kinetics. Based on the linear Thermodynamic of Irreversible Processes ideas, the non-equilibrium phase change rate is written as a linear function of the water chemical potential difference between the liquid and vapour state. In this relation, the system is characterized by a phenomenological coefficient that depends on the state variables. Using an original experimental set-up able to analyze the response of a porous medium subjected to non-equilibrium conditions, the phase change coefficient is determined in various configurations. This paper focuses on the influence of the gas phase pressure and underlines that a low gas pressure decreases the phase change kinetics. Then, evaporation and condensation processes are compared showing an asymmetric behaviour. These experimental results are interpreted from a microscopic point of view by relying on recent works dealing with molecular dynamics numerical simulation of the liquid/gas interface.  相似文献   

4.
This paper analyzes a coupled thermo-hydro-mechanical behavior of unsaturated soils based on the theory of mixtures. Unsaturated soil is considered as a mixture composed of soil skeleton, liquid water, vapor, dry air, and dissolved air. In addition to the mass and momentum conservation equations of each component and the energy conservation equation of the mixture, the system is closed using other 37 constitutive (or restriction) equations. As the change in water chemical potential is identical to the change in vapor chemical potential, a thermodynamic restriction relationship for the phase transition between pore water and pore vapor is formulated, in which the impact of the change in gas pressure on the phase transition is taken into account. Six final govern- ing equations are given in incremental form in terms of six primary variables, i.e., three displacement components of soil skeleton, water pressure, gas pressure, and temperature. The processes involved in the coupled model include thermal expansions of soil skeleton and soil particle, Soret effect, phase transition between water and vapor, air dissolution in pore water, and deformation of soil skeleton.  相似文献   

5.
We perform density functional molecular dynamics simulations of liquid and solid MgSiO3 in the pressure range of 120–1600 GPa and for temperatures up to 20,000 K in order to provide new insight into the nature of the liquid–liquid phase transition that was recently predicted on the basis of decaying laser shock wave experiments [Phys. Rev. Lett. 108 (2012) 065701]. However, our simulations did not show any signature of a phase transition in the liquid phase. We derive the equation of state for the liquid and solid phases and compute the shock Hugoniot curves. We discuss different thermodynamic functions and by explore alternative interpretations of the experimental findings.  相似文献   

6.
This paper uses the thermodynamic data of aqueous solutions of uncrosslinked poly(N-isopropylacrylamide) (PNIPAM) to study the phase transition of PNIPAM hydrogels. At a low temperature, uncrosslinked PNIPAM can be dissolved in water and form a homogenous liquid solution. When the temperature is increased, the solution separates into two liquid phases with different concentrations of the polymer. Covalently crosslinked PNIPAM, however, does not dissolve in water, but can imbibe water and form a hydrogel. When the temperature is changed, the hydrogel undergoes a phase transition: the amount of water in the hydrogel in equilibrium changes with temperature discontinuously. While the aqueous solution is a liquid and cannot sustain any nonhydrostatic stress in equilibrium, the hydrogel is a solid and can sustain nonhydrostatic stress in equilibrium. The nonhydrostatic stress can markedly affect various aspects of the phase transition in the hydrogel. We adopt the Flory-Rehner model, and show that the interaction parameter as a function of temperature and concentration obtained from the PNIPAM-water solution can be used to analyze diverse phenomena associated with the phase transition of the PNIPAM hydrogel. We analyze free swelling, uniaxially and biaxially constrained swelling of a hydrogel, swelling of a core-shell structure, and coexistent phases in a rod. The analysis is related to available experimental observations. Also outlined is a general theory of coexistent phases undergoing inhomogeneous deformation.  相似文献   

7.
Two-phase flow and capillarity phenomenon in porous solids, well known in physics and engineering, are treated from a rigorous continuum thermomechanical point of view for the first time. A ternary model, consisting of a porous solid phase, a liquid phase, and a gas phase, is investigated within the framework of thermodynamics. The main result of the evaluation of the entropy principle turns out to be that the interaction forces between the solid, gas, and liquid phases are dependent on the free Helmholtz energy functions of the corresponding phases and on the gradient of the liquid density. The classical result for the driving volume force for raising a water column in a narrow tube against the force of gravity is contained in the general investigation.  相似文献   

8.
9.
Ionic electroactive polymers can be used as sensors or actuators. For this purpose, a thin film of polyelectrolyte is saturated with a solvent and sandwiched between two platinum electrodes. The solvent causes a complete dissociation of the polymer and the release of small cations. The application of an electric field across the thickness results in the bending of the strip and vice versa. The material is modeled by a two-phase continuous medium. The solid phase, constituted by the polymer backbone inlaid with anions, is depicted as a deformable porous media. The liquid phase is composed of the free cations and the solvent (usually water). We used a coarse grain model. The conservation laws of this system have been established in a previous work. The entropy balance law and the thermodynamic relations are first written for each phase and then for the complete material using a statistical average technique and the material derivative concept. One deduces the entropy production. Identifying generalized forces and fluxes provides the constitutive equations of the whole system: the stress–strain relations which satisfy a Kelvin–Voigt model, generalized Fourier’s and Darcy’s laws and the Nernst–Planck equation.  相似文献   

10.
非饱和土力学理论的研究进展   总被引:2,自引:0,他引:2  
回顾了非饱和土有效应力的发展,目前普遍认同采用两个应力变量来建立本构模型,且对基质吸力中毛细和粘吸两部分作用进行了阐述。分析了非饱和土强度问题,包括抗剪强度和抗拉强度。讨论了非饱和土的本构模型问题,包括基于净应力和基质吸力的弹塑性模型,基于Bishop有效应力和基质吸力的水力力学耦合弹塑性模型,以及双孔隙结构的模型。最后探讨了热力学方法和多孔介质理论在非饱和土中的应用,基于多孔介质理论在多场耦合条件下土体复杂的行为是当前值得研究的问题。  相似文献   

11.
A thermomechanical theory for multiphase transport in unsaturated swelling porous media is developed on the basis of Hybrid Mixture Theory (saturated systems can also be modeled as a special case of this general theory). The aim is to comprehensively and non-empirically describe the effect of viscoelastic deformation on fluid transport (and vice versa) for swelling porous materials. Three phases are considered in the system: the swelling solid matrix s, liquid l, and air a. The Coleman–Noll procedure is used to obtain the restrictions on the form of the constitutive equations. The form of Darcy’s law for the fluid phase, which takes into account both Fickian and non-Fickian transport, is slightly different from the forms obtained by other researchers though all the terms have been included. When the fluid phases interact with the swelling solid porous matrix, deformation occurs. Viscoelastic large deformation of the solid matrix is investigated. A simple form of differential-integral equation is obtained for the fluid transport under isothermal conditions, which can be coupled with the deformation of the solid matrix to solve for transport in an unsaturated system. The modeling theory thus developed, which involves two-way coupling of the viscoelastic solid deformation and fluid transport, can be applied to study the processing of biopolymers, for example, soaking of foodstuffs and stress-crack predictions. Moreover, extension and modification of this modeling theory can be applied to study a vast variety of problems, such as drying of gels, consolidation of clays, drug delivery, and absorption of liquids in diapers.  相似文献   

12.
A two-scale theory for the swelling biopolymeric media is developed. At the microscale, the solid polymeric matrix interacts with the solvent through surface contact. The relaxation processes within the polymeric matrix are incorporated by modeling the solid phase as viscoelastic and the solvent phase as viscous at the mesoscale. We obtain novel equations for the total stress tensor, chemical potential of the solid phase, heat flux and the generalized Darcy's law all at the mesoscale. The constitutive relations are more general than those previously developed for the swelling colloids. The generalized Darcy's law could be used for modeling non-Fickian fluid transport over a wide range of liquid contents. The form of the generalized Fick's law is similar to that obtained in earlier works involving colloids. Using two-variable expansions, thermal gradients are coupled with the strain rate tensor for the solid phase and the deformation rate tensor for the liquid phase. This makes the experimental determination of the material coefficients easier and less ambiguous.  相似文献   

13.
A criterion of phase equilibrium for mixtures of materials with arbitrary symmetry (e.g. between solid and fluid or two solid mixture phases) is deduced using a rational thermodynamics approach. This criterion, known also as Maxwell relation, is expressed via the difference of chemical potential tensors (Eshelby tensors) on the singular surface dividing the bulk phases.The thermomechanical balance equations, the entropy inequality and the Maxwell relation for phase equilibrium are given first for the case of pure (one-constituent) materials of arbitrary symmetry and then for the case of mixtures (including chemically reacting ones) of arbitrary symmetry.In the special case of fluids it is shown that the chemical potential tensors reduce to the classical scalar chemical potentials and the Maxwell relations to the classical thermodynamic criterion for the phase equilibrium.  相似文献   

14.
A two-color digital particle image velocimetry and accelerometry (DPIV and DPIA) measurement technique is described that records the velocity and acceleration fields of both the solid and liquid phases simultaneously. Measurements were taken at turbulent conditions of a vertical pipe flow using glass spheres as the solid phase and fluorescent particles to indicate fluid phase motion. Nd-YAG pulse lasers acted as illumination sources and images were recorded by two monochrome CCD cameras. The two-color aspect of the technique was realized by placing optical filters in front of the cameras to discriminate between the phases. Cross-correlations and auto-correlations were applied to determine velocity and acceleration fields of the two phases. Results showing some of the capabilities of the technique as applied to a two-phase pipe flow experiment are provided. For the condition studied, it was found that there was turbulence suppression due to the solid phase and that the statistics associated with the acceleration probability distribution were different for the solid and fluid phases.  相似文献   

15.
A numerical method for the solution to the density‐dependent incompressible Navier–Stokes equations modeling the flow of N immiscible incompressible liquid phases with a free surface is proposed. It allows to model the flow of an arbitrary number of liquid phases together with an additional vacuum phase separated with a free surface. It is based on a volume‐of‐fluid approach involving N indicator functions (one per phase, identified by its density) that guarantees mass conservation within each phase. An additional indicator function for the whole liquid domain allows to treat boundary conditions at the interface between the liquid domain and a vacuum. The system of partial differential equations is solved by implicit operator splitting at each time step: first, transport equations are solved by a forward characteristics method on a fine Cartesian grid to predict the new location of each liquid phase; second, a generalized Stokes problem with a density‐dependent viscosity is solved with a FEM on a coarser mesh of the liquid domain. A novel algorithm ensuring the maximum principle and limiting the numerical diffusion for the transport of the N phases is validated on benchmark flows. Then, we focus on a novel application and compare the numerical and physical simulations of impulse waves, that is, waves generated at the free surface of a water basin initially at rest after the impact of a denser phase. A particularly useful application in hydraulic engineering is to predict the effects of a landslide‐generated impulse wave in a reservoir. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
非饱和土土水特征曲线(SWCC)测试与预测   总被引:8,自引:0,他引:8  
非饱和土土水特征曲线(SWCC)表示了土中含水量与吸力之间的关系。文章介绍了6种常用方法,各有其适用范围。体积压力板仪可量测最大基质吸力值为1500kPa的干燥曲线和浸湿曲线;超过1500kPa时,可用盐溶液法进行量测;Tem-ple仪可量测基质吸力达100kPa的干燥曲线;滤纸法可用于测量土体的基质吸力与总吸力;Dew-point电位计可用于量测土样总吸力变化,尤其适合渗透吸力的量测;TDR探头适合于量测小于300kPa的基质吸力。用GDS非饱和土三轴仪可以进行SWCC测试,测试范围主要取决于陶土板的进气值。用准确的数学模型对测得的含水量、吸力数据进行拟合,对于预测非饱和土力学性质、渗透系数、抗剪强度及分析边坡稳定性有重要意义。由于准确测试SWCC难度较大,并且测试影响因素较多,所以根据土体孔隙大小分布和颗粒大小分布情况预测SWCC,也是一种较好的方法。  相似文献   

17.
两相速度平衡条件下的两相流声速   总被引:9,自引:1,他引:9  
刘大有 《力学学报》1990,22(6):660-669
在两相速度平衡条件下,本文首先给出无相变的两相流中声速的一般表达式。再对相间传热作出热平衡或绝热假设,得到完全平衡的和部分平衡的声速的具体表达式。两相流(速度平衡的)声速的许多现有公式都可以作为特例从一般表达式中导出。本文还研究了相变对声速的影响,给出了一元两相系的和二元两相系的完全平衡(速度平衡、热平衡和相平衡)声速公式。  相似文献   

18.
This article points at some critical issues which are connected with the theoretical formulation of the thermodynamics of solid–fluid mixtures of frictional materials. It is our view that a complete thermodynamic exploitation of the second law of thermodynamics is necessary to obtain the proper parameterizations of the constitutive quantities in such theories. These issues are explained in detail in a recently published book by Schneider and Hutter (Solid–Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context, 2009), which we wish to advertize with these notes. The model is a saturated mixture of an arbitrary number of solid and fluid constituents which may be compressible or density preserving, which exhibit visco-frictional (visco-hypoplastic) behavior, but are all subject to the same temperature. Mass exchange between the constituents may account for particle size separation and phase changes due to fragmentation and abrasion. Destabilization of a saturated soil mass from the pre- and the post-critical phases of a catastrophic motion from initiation to deposition is modeled by symmetric tensorial variables which are related to the rate independent parts of the constituent stress tensors.  相似文献   

19.
In systems of coupled transport processes the question of the appropriate driving potentials is a point of discussion. In this article, three different approaches to derive models for transport currents are systematically compared. According to a general linear approach, an arbitrary full set of independent state variables and material properties is sufficient to describe any transport current. This approach is derived here from a symmetry principle. Thermodynamic and micromechanical approaches are more complex and even less general, but they allow additional statements about the transport coefficients and they reduce the number of transport processes. In the thermodynamic approach the additional information stems from the calculation of the entropy production rate; the micromechanical approach involves a microphysical model of the considered porous system. As a practical example, the three derivation schemes are applied to the often-encountered case of non-hysteretic heat and moisture transport in homogeneous building materials. It is shown, how the general state variables of a porous system are reduced to only two. Then from the general linear approach it can be seen, that all equations for the moisture transport current using a main driving potential (e.g. moisture content, vapour pressure, chemical potential) and an independent secondary driving potential (e.g. temperature, liquid pressure) are equivalent, without recurrence to the thermodynamic or micromechanical approach. However, the transport coefficients are arbitrary phenomenological functions depending on the two state variables. Based on a literature survey it is shown, which additional statements can be made in the thermodynamic and in the micromechanical approach. The latter yields the pressure-driven model (vapour and liquid pressure as the two driving potentials). Finally it is shown, what is to be expected, if in more complex systems the number of state variables increases.  相似文献   

20.
The form of the equilibrium effective stress acting on the solid phase of a porous medium containing two immiscible fluid phases is derived. The derivation makes use of the postulation of the thermodynamics of the system at the macroscale, a scale on the order of tens of pore diameters. The postulation at this scale facilitates the identification of the fraction of the solid surface in contact with each fluid phase as being the appropriate coefficient weighting each of the fluid phase pressures analogous to the Bishop parameter. In addition, the curvature of the surface of the solid phases is shown to impact the pressure exerted on the solid phase by the fluid. For the special case of low saturations when the wetting phase may be considered to be present only as a film on the solid phase, the macroscale disjoining pressure is found to modify the equilibrium form of the effective stress. In addition to the equilibrium effective stress, which is related to the forces acting on the interface between the solid phase and the fluids, the appropriate relation between the fluid pressures at the fluid–fluid interface is obtained. This analysis leads to the expression for the capillary pressure as a function of the phase pressures and the disjoining pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号