首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using a tunable single mode dye laser the isotope shift of the 573.7 nm-line between the isotopes Lu175 and Lu176 has been determined to be IS(176?175, 573.7 nm)=?394(5) MHz yielding a change of mean square nuclear radii ofδr 2〉=0.022(5) fm2. In addition from our measurements the following values of the hyperfine splitting constantsA andB could be deduced Lu176 5d6s6p 4 F 3/2:A=?651.4(0.3) MHz,B=2,494(4) MHz 5d6s 2 2 D 3/2:A=138.0(0.3) MHz,B=2,131(3) MHz Lu175 5d6s6p 4 F 3/2:A=?924.7(0.5) MHz,B=1,767(4) MHz.  相似文献   

2.
The hyperfine structure separations of both doublet states2 D 3/2 and2 D 5/2 of the ground state configuration 6s 2 5d of Lu175 have been remeasured with high precision using the atomic beam magnetic resonance method. Magnetic dipole transitions between Zeeman components of the hfs levels were induced applying Ramsey's technique of separated oscillatory fields whenever the field dependence of the resonances was small enough. The hfs intervals at zero field and hfs interaction constants were derived from the measurements. The constants were then corrected for hfs perturbations between the two levels of the doublet. Configuration interaction has been taken into account for the calculation of the dipole matrix elements. The corrected hfs constants are:J=3/2:A=194.332921 (300) MHzB=1511.396 267 (320) MHzC=?70 (19) HzJ=5/2:A=146.776 472 (138) MHzB=1860.656132 (840) MHzC=913 (162) HzD=?16 (24) Hz A quadrupole hfs anomaly between Lu175 and Lu176m was not found when comparing the following two ratios: Lu175:B(5/2)/B(3/2)=1.2310850 (16) Lu176m :B(5/2)/B(3/2)=1.2310818 (30). So far we have not succeeded in computing an octopole moment from the twoC-factors for the terms2 D 3/2,5/2 because the influence of higher configurations could not sufficiently be considered.  相似文献   

3.
The hyperfine structure of the (3(d 4s)1 D 2metastable state of43Ca has been measured using theABMR-LIRF method (atomic beam magnetic resonance, detected by laser induced resonance fluorescence). The measurements yielded for the magnetic dipole and electric quadrupole constantsA=?17.650(2) MHz andB=?4.642(12) MHz, respectively. From the measuredB factor the spectroscopic electric quadrupole moment (uncorrected for shielding effects) has been calculated to beQ(43Ca)=?0.062(12) barn. In addition, isotope shifts in the lines (3d 4s)1 D 2(3d 4p)1 F 3 0 and (3d 4s)1 D 2(4s 5p)1 p 1 0 for the stable calcium isotopes have been obtained by high resolution laser spectroscopy.  相似文献   

4.
By means of a level crossing experiment the hyperfine structure constants of thez 6 P 7/2-level of Eu have been determined. The results areA=-6.51(6) MHz andB= 131.2(1.0) MHz in the isotope151Eu andA=-2.84(3) MHz andB=327.5(1.5) MHz in the isotope153Eu. Experimental data on the hyperfine splitting are available now for 11 of the 12 levels of the configuration 4f 7 (8S)6s 6p of EuI. These data are compared with the theoretical interpretation given by Bordarieret al. [1] which was based on only 7A-factors andB-factors. It is shown that the agreement between theory and experiment can be improved by taking into account configuration interactions.  相似文献   

5.
The hyperfine structure of the two multiplets 4d 45s 6 D and 4d 35s 2 4 F of93Nb has been studied by the atomic-beam magnetic-resonance method. After applying corrections due to effects of off-diagonal hyperfine and Zeeman interactions the hyperfine interaction constantsA andB and the electrong factors gJ are determined for all nine levels of the two multiplets.  相似文献   

6.
The hyperfine structure of the lowest1P1 state of25Mg,43Ca,87Sr,135Ba and137Ba have been measured by the level-crossing and anticrossing technique. The magnetic dipole and electric quadrupole coupling constants determined by these measurements are25Mg(3s3p1P1):A=? 7.7(5) MHz; 16 MHz>B>0 MHz,43Ca(4s4p1P1):A=? 15.3(4) MHz; ¦B¦<12 MHz,87Sr (5s5p1P1:A=? 3.4(4) MHz;B=39(4) MHz,135Ba(6s6p1P1):A=? 97.5(1.0) MHz;B=31(9)MHz,137Ba(6s6p1P1):A=?109.2(1.2) MHz;B=51(12)MHz. The results have been compared with the predictions of the Breit-Wills theory of the two-electron hyperfine structure using the experimental data on the3P states. Large discrepancies have been observed which are due to different radial wave functions of thes andp electron in the triplet and singlet system. This effect has been taken into account by fitting the data with the aid of two additional parameters. That this procedure is justified is shown by an analysis of the fine structure splitting, the life times, and the isotopic shifts in thesp configurations of group II elements.  相似文献   

7.
The hyperfine structure of the ground state 4d 5 5s 7 S 3 of95Mo and97Mo has been measured by the atomic beam magnetic resonance technique with the following results:95Mo:A=?208.582060(10)MHz,B=37.050 (100) kHzC=?30 (10) Hz,D=?3 (3) Hz97Mo:A=? 212.980930 (10) MHz,B?69.990(140)kHzC=?5 (10) Hz,D=0 (3) Hz. After application of corrections calculated according to second order perturbation theory, the hyperfine structure constants became:95Mo: Ac=?208.582560(290)MHz,B c =16.920(4300)kHzC c=?30(270) Hz,D c =? 3 (50) Hz97Mo: Ac=212.981450(300) MHz,B c =?90.780(4400)kHzC c=?6(270) Hz,D c =0 (50) Hz. With the known ratio ofg I(95Mo)/g I(97Mo) [1] a calculation of the hyperfine anomaly yields:95 Δ 97=?0.01009(17)%. The ratio of the uncorrectedB factors isB(97Mo)/B(95Mo)=?1.8890(47). Because of the relatively large effects of second order hyperfine structure, the ratio of the correctedBfactors differs considerably from the ratio of the uncorrectedB factors. From the correctedB factors the electric quadrupole moments may be evaluated by means of calculated radial integrals [2]. The results are:Q (95Mo)=?0.019(12)barns,Q(97Mo)=0.102(39)barns.  相似文献   

8.
Using the level crossing technique the ratios and absolute values of the hyperfine structure (hfs) constants of the levelsz 4F9/2 andz 4F7/2 of the configuration 3d 74s4p of Co I were measured:z 4 F 9/2: ¦A¦=(811±12)MHz; ¦B¦=(48±93) MHz;B/A=?0.06±0.11 A>0; B<0z 4 F 7/2: ¦A¦ = (659 ±11)MHz; ¦B¦=(33±84)MHz;B/A=?0.05±0.13 A>0; B<0. In addition the hfs constants of three other excited levels of Co I could be determined by optical methods:z 4 F 9/2:A=525±26 MHz;B=200 MHzy 4 F 9/2:A=300±30 MHz;B=?500 MHzy 4 G 11/2:A=315±20 MHz;B=400 MHz. The experimental results are compared with known experimental and also with theoretical values which where calculated using the parametric potential method.  相似文献   

9.
The level-crossing technique with combined electric and magnetic fields was used to investigate the hyperfine structure of the 5s 25d 2 D 3/2- and 5s 26d 2 D 3/2-stedes of the In I-spectrum. From the shifts of the level-crossing signals due to the Stark effect of the electric field the Stark constantsβ of both states were deduced: 5s 25d 2 D 3/2: ¦β¦=0.33(3) Mc/(kV/cm)2 5s 26d 2 D 3/2: ¦β¦=6(1) Mc/(kV/cm)2. By theoretical calculations with wave functions of the Coulomb approximation one can show, that the Stark effect in both states is mainly due to admixtures of the 5s 26p- resp.5s 27p-configuration.  相似文献   

10.
Doppler-free two-photon transitions of cesium 6S1/2→7D3/2, 5/2 were observed in a thermal stabilized cell. A repeated spectrum of 75 MHz introduced from the side band of an electro-optical modulator served as a frequency marker to improve the accuracy of frequency measurement. The hyperfine magnetic dipole constant A and electrical quadrupole constant B of Cs 7D3/2, 5/2 can be derived from the splitting intervals of the observed spectra. The results are: A=7.36(07) MHz, B=−0.88(87) MHz for the 7D3/2 state, and A=−1.81(05) MHz, B=1.01(1.06) MHz for the 7D5/2 state. These coefficients are improvements for testing high-precision measurements and determining fundamental physical constants.  相似文献   

11.
The hyperfine structure of the ground configurations 5d 8 6s 2 and 5d 9 6s of the stable Platin isotopes 194, 195, 196, 198 was analyzed. For the isotope 195 a complete set of the magnetic splitting constantsA is given. TheA constants of the levels 5d 8 6s 2 3 P 1 and1 D 2 were determined for the first time. From these data the electronic splitting constants a6 s=l010(10) mK, ad 3/2=57 (6) and ad 5/2=27 (2) mK could be evaluated. The effect of core polarization is discussed and a fieldκ cp=?5.6(1.0) a.u. per 5d-electron spin is found. Also the isotopic shift is determined and for the mean quadratic nuclear charge radius the valueΒδ <r 2>=0.095 (10) fm2 is derived.  相似文献   

12.
In order to determine the electric quadrupole moment of Sr87 (I= 9/2) the hyperfine structure-splitting of the 5s5p 3 P 1-state of the SrI-spectra was investigated by optical double resonance. By detection of high frequency transitions (ΔF=±1,Δm F=0,±1) in an external magnetic fieldH 0≈0 one obtains the hyperfine structure separations asv F=11/2?F=9/2=1463·149 (6) Mc/sec andv F=9/2?F=7/2=1130·264 (6) Mc/sec. From these frequencies one calculates the magnetic hyperfine structure-splitting constantA=?260·084 (2) Mc/sec and the electric quadrupole interaction constantB=?35·658 (6) Mc/sec. B leads to an electric quadrupole moment ofQ(Sr87)=+0·36 (3)·10?24 cm2.  相似文献   

13.
The5d 76s2 4F9/2 atomic ground state of191Ir and193Ir has been studied using the atomic-beam magnetic-resonance method. The results are:193Ir:g J(4F9/2)=1.29694 (3)191Ir:Δv(4F9/2; F=6?F=5)=659.26496 (12) MHzΔv( 4F9/2; F=5?F=4)=189.44002 (09) MHzΔv( 4F9/2; F=3?F=4)=84.05040 (80) MHzA=57.52148 (04) MHzB=471.20425 (57) MHzC=?0.020 (30) kHz193Ir:Δv( 4F9/2; F=6?F=5)=660.09043 (12) MHzΔv( 4F9/2; F=5?F=4)=224.47848 (13) MHzΔv( 4F9/2; F=?F=4)=33.53453 (89) MHzA=62.65556 (05) MHzB=426.23546 (64) MHzC=0.020 (30) kHz Using the magnetic dipole moments known by NMR-technique [1] we obtained for the electric quadrupole moments as calculated from the hyperfine interaction constantsA andB:Q(191Ir)=0.78 (20) barns,Q(193Ir)=0.70 (18) barns (uncorrected for core polarization effects). A calculation of the hyperfine anomaly yields:191 Δ 193=?0.00023 (10). The ratio of theB factors which should be the same as for the quadrupole moments turned out to be:B(191Ir)/B(193Ir)=Q(191Ir)/Q(193Ir)=1.105502(3).  相似文献   

14.
Measurements of the hyperfine structures in the 6p5d 1 D 2,3 D 1 and3 F 2, 3, 4 states of135Ba and137Ba, and isotope-shifts in several far-red transitions between the 6s 5d and 6p 5d configurations, as well as the transition 6s 2 1 S 0→6s6p 3 P 1 at 7,911 Å have been performed using high-resolution laser spectroscopy on a collimated atomic beam of natural barium. An analysis of the magnetic-dipole interaction in the 6p 5d configuration using effective one- and two-body hyperfine operators is presented. In particular the contact interaction was studied with respect to the correlation between the two valence electrons. Effects of strong configuration interaction were found. From a King-plot analysis of the isotope shift term- andJ-dependence of the field shift have been evaluated for the transitions between the 6s 5d and 6p 5d configurations. Relativistic Hartree-Fock (RHF) calculations have been performed of electron densities at the nucleus for six different configurations in Ba I and Ba II. The RHF calculations reproduce the experimental King-plot slopes quite well, while the absolute values, of the changes in electron density at the nucleus for the studied transitions, are found to be 9% lower than the results derived from a muonic experiment.  相似文献   

15.
刘李辉  邹宏新  刘曲  李玺 《物理学报》2012,61(10):103101-103101
光学频率标准会受到环境温度的黑体辐射影响发生频移,进而影响其准确度. 本文估算了199Hg+的超精细能级5d106s2S1/2 (F=0)和5d96s2 2D5/2 (F=2)的极化率,得到了室温(300 K)下黑体辐射引起的相对频移为-5.4×10-17, 最后讨论了低温环境下黑体辐射对199Hg+光频标的影响.  相似文献   

16.
The hyperfine structure of the metastable atomic states (3d 44s 2)5 D 1,2,3,4 of53Cr has been measured using theABMR-LIRF method (atomic beam magnetic resonance detected by laser induced resonance fluorescence). The dipole coupling constantsA and the quadrupole coupling constantsB are found to beA(5 D 1)=?17.624(2) MHzB(5 D 1)=?21.847(5) MHzA(5 D 2)=?25.113(2) MHzB(5 D 2)=?13.485(5) MHzA(5 D 3)=?35.683(2) MHzB(5 D 3)=15.565(5) MHzA(5 D 4)=?48.755(2) MHzB(5 D 4)=63.021(5) MHz. From these measured hfs constants the electric quadrupole moment for53Cr is calculated to beQ=?0.15 (5) barn. The 30% error takes into account the uncertainties due to configuration interaction effects (shielding and antishielding effects) and of deviations from pure SL-coupling for the states5 D 1,2,3,4.  相似文献   

17.
The hyperfine structure splitting of the 82 P 3/2 state of Rb85 and Rb87 has been investigated with optical double resonance. The following interaction constants have been obtained:A 8p 85 =1.99(2) MHz,B 8p 85 =1.98(12) MHzA 8p 87 =6.75(3) MHz,B 8p 87 =0.96(6) MHz. The lifetime of the 82 P 3/2 state is: τ=4.0(8) · 10?7 sec.  相似文献   

18.
The hyperfine structure of the metastable atomic states (3d 74s)5 F 2,3,4,5 and (3d 7 4s)3 F 2,3,4 of57Fe has been measured using theABMR- LIRF method (atomic beam magnetic resonance detected by laser induced resonance fluorescence). From these measurements the following hfs constantsA of the magnetic dipole interaction have been obtained (corrected for second order effects):A(5 F 2)=55.994(7) MHzA(5 F 3)=69.632(5) MHzA(5 F 4)=78.435(4) MHzA(5 F 5)=87.246(3) MHzA(3 F 2)=143.328(4) MHzA(3 F 3)=50.602(10) MHzA(3 F 4)=13.456(5) MHz  相似文献   

19.
The resonance fluorescence of the transitions 3d 2 D 5/2,3/2 3p 2 P 3/2,1/2 in the Al I-spectrum was observed as a function of a magnetic field. Adding an electric field parallel to the magnetic field the shifts of level crossing signals caused by the Stark effect of the electric field were used to separate overlapping signals of the 3d 2 D 5/2- and 3d 2 D 3/2-states. The following values of the Stark parametersβ of both states and the hyperfine structure constantsA andB of the 3d 2 D 3/2-states were deduced: 3d 2 D 3/2∶ ¦A¦=99(1) Me/sec · gJ/0,8,B/A=?0,22(12), ¦β¦=0.45 (8) Mc/sec/(kV/cm)2 · gJ,/0.8, A/β< 0 3d2D5/2∶ ¦β¦=0.16 (4) Mc/sec/(kV/cm)2 · gJ/1.2, A/β>0. Some qualitative aspects of interconfiguration mixing in the 3d2D-states are discussed.  相似文献   

20.
The influence of an electric field on the energy levels of the 6d2D3/2-state in the Tl I-spectrum was studied by measuring the shifts of level crossing signals relative to their magnetic field positions. The following values of the magnetic hyperfine constantA and the Stark parameterβ were deduced: ¦A¦=42(2) Mc/sec · gJ/0.8, ¦β¦=0.12(1) Mc/sec/(kV/cm)2 · gJ/0.8 and A/β>0. Assuming that the main part of the energy shifts are caused by admixtures of the 7p2P-states the sign of the Stark parameterβ and —from the measured ratio A/β>0 —the sign of theA-factor should be negative. For electric field strength E?30 kV/cm the energy shifts of the 6d2D3/2state are considerably greater than the hyperfine structure splitting. Therefore the case of decoupled hyperfine structure is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号