首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 371 毫秒
1.
The longitudinal optical (LO) phonon energy in AlGaN/GaN heterostructures is determined from temperature-dependent Hall effect measurements and also from Infrared (IR) spectroscopy and Raman spectroscopy. The Hall effect measurements on AlGaN/GaN heterostructures grown by MOCVD have been carried out as a function of temperature in the range 1.8-275 K at a fixed magnetic field. The IR and Raman spectroscopy measurements have been carried out at room temperature. The experimental data for the temperature dependence of the Hall mobility were compared with the calculated electron mobility. In the calculations of electron mobility, polar optical phonon scattering, ionized impurity scattering, background impurity scattering, interface roughness, piezoelectric scattering, acoustic phonon scattering and dislocation scattering were taken into account at all temperatures. The result is that at low temperatures interface roughness scattering is the dominant scattering mechanism and at high temperatures polar optical phonon scattering is dominant.  相似文献   

2.
The Raman spectra of unintentionally doped gallium nitride (GaN) and Mg-doped GaN films were investigated and compared at room temperature and low temperature. The differences of E2 and A1(LO) mode in two samples are discussed. Stress relaxation is observed in Mg-doped GaN, and it is suggested that Mg-induced misfit dislocation and electron–phonon interaction are the possible origins. A peak at 247 cm−1 is observed in both the Raman spectra of GaN and Mg-doped GaN. Temperature-dependent Raman scattering experiment of Mg-doped GaN shows the frequency and intensity changes of this peak with temperature. This peak is attributed to the defect-induced vibrational mode. Translated from Chinese Journal of Semiconductors, 2005, 26(4) (in Chinese)  相似文献   

3.
张金风  毛维  张进城  郝跃 《中国物理 B》2008,17(7):2689-2695
To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in Al- GaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al content and thickness of AlGaN barrier layer. The theoretical results are compared with one of the highest measured of 2DEG mobility reported for AlGaN/GaN heterostructures. The 2DEG mobility is modelled as a combined effect of the scat- tering mechanisms including acoustic deformation-potential, piezoelectric, ionized background donor, surface donor, dislocation, alloy disorder and interface roughness scattering. The analyses of the individual scattering processes show that the dominant scattering mechanisms are the alloy disorder scattering and the interface roughness scattering at low temperatures. The variation of 2DEG mobility with the barrier layer parameters results mainly from the change of 2DEG density and distribution. It is suggested that in AlGaN/GaN samples with a high Al content or a thick AlGaN layer, the interface roughness scattering may restrict the 2DEG mobility significantly, for the AlGaN/GaN interface roughness increases due to the stress accumulation in AlGaN layer.  相似文献   

4.
The Raman spectra of unintentionally doped gallium nitride (GaN) and Mg-doped GaN films were investigated and compared at room temperature and low temperature. The differences of E2 and A1(LO) mode in two samples are discussed. Stress relaxation is observed in Mg-doped GaN, and it is suggested that Mg-induced misfit dislocation and electron–phonon interaction are the possible origins. A peak at 247 cm?1 is observed in both the Raman spectra of GaN and Mg-doped GaN. Temperature-dependent Raman scattering experiment of Mg-doped GaN shows the frequency and intensity changes of this peak with temperature. This peak is attributed to the defect-induced vibrational mode.  相似文献   

5.
The aluminium gallium nitride (AlGaN) barrier thickness dependent trapping characteristic of AlGaN/GaN heterostructure is investigated in detail by frequency dependent conductance measurements. The conductance measurementsin the depletion region biases (−4.8 V to −3.2 V) shows that the Al0.3Ga0.7N(18 nm)/GaN structure suffers from both the surface (the metal/AlGaN interface of the gate region) and interface (the AlGaN/GaN interface of the channel region) trapping states, whereas the AlGaN/GaN structure with a thicker AlGaN barrier (25 nm) layer suffers from only interface (the channel region of AlGaN/GaN) trap energy states in the bias region (−6 V to −4.2). The two extracted time constants of the trap levels are (2.6–4.59) μs (surface) and (113.4–33.8) μs (interface) for the Al0.3Ga0.7N(18 nm)/GaN structure in the depletion region of biases (−4.8 V to −3.2 V), whereas the Al0.3Ga0.7N (25 nm)/GaN structure yields only interface trap states with time constants of (86.8–33.3) μs in the voltage bias range of −6.0 V to −4.2 V. The extracted surface trapping time constants are found to be very muchless in the Al0.3Ga0.7N(18 nm)/GaN heterostructure compared to that of the interface trap states. The higher electric field formation across the AlGaN barrier causes de-trapping of the surface trapped electron through a tunnelling process for the Al0.3Ga0.7N(18 nm)/GaN structure, and hence the time constants of the surface trap are less.  相似文献   

6.
The electron mobility limited by the interface and surface roughness scatterings of the two-dimensional electron gas in AlxGa1-xN/GaN quantum wells is studied. The newly proposed surface roughness scattering in the AlGaN/GaN quantum wells becomes effective when an electric field exists in the AlxGa1-xN barrier. For the AlGaN/GaN potential well, the ground subband energy is governed by the spontaneous and the piezoelectric polarization fields which are determined by the barrier and the well thicknesses. The thickness fluctuation of the AlGaN barrier and the GaN well due to the roughnesses cause the local fluctuation of the ground subband energy, which will reduce the 2DEG mobility.  相似文献   

7.
Ensemble Monte Carlo simulations of electron transport through a new aluminum gallium nitride/gallium nitride (AlGaN/GaN) cold cathode emitter are reported. We analyze the energy spectrum of carriers prior to being injected into a low work function slab of Lanthanum Hexaboride (LaB6) as a function of the ramp energy of the carriers at the AlGaN/GaN heterojunction. Plasmon scattering is shown to be the major scattering mechanism in the structure leading to substantial shift towards the low kinetic energy end of the energy spectrum of the carriers injected into the low work function Lanthanum Hexaboride thin film. Intervalley scattering is found to dominate in the depletion layer at the GaN/LaB6interface. Design improvements to increase the efficiency of the cold cathode are suggested.  相似文献   

8.
GaN layers with different polarities have been prepared by radio-frequency molecular beam epitaxy (RF-MBE) and characterized by Raman scattering. Polarity control are realized by controlling Al/N flux ratio during high temperature AlN buffer growth. The Raman results illustrate that the N-polarity GaN films have frequency shifts at $A_{1}$(LO) mode because of their high carrier density; the forbidden $A_{1}$(TO) mode occurs for mixed-polarity GaN films due to the destroyed translation symmetry by inversion domain boundaries (IDBS); Raman spectra for Ga-polarity GaN films show that they have neither frequency shifts mode nor forbidden mode. These results indicate that Ga-polarity GaN films have a better quality, and they are in good agreement with the results obtained from the room temperature Hall mobility. The best values of Ga-polarity GaN films are 1042 cm$^{2}$/Vs with a carrier density of 1.0$\times $10$^{17}$~cm$^{ - 3}$.  相似文献   

9.
In this paper, Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition (LPMOCVD) are investigated. We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K. The temperature-dependences of GaN phonon modes (A1 (TO), E2 (high), and E1 (TO)) and the linewidths of E2 (high) phonon peak are studied. The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range, and the relationship can be fitted to the pseudo-Voigt function. From analytic results we find a critical temperature existing in the relationship, which can characterize the anharmonic effects of a-plane GaN in different temperature ranges. In the range of higher temperature, the relationship exhibits an approximately linear behavior, which is consistent with the analyzed results theoretically.  相似文献   

10.
In this paper,Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition(LPMOCVD) are investigated.We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K.The temperature-dependences of GaN phonon modes(A1(TO),E2(high),and E1(TO)) and the linewidths of E2(high) phonon peak are studied.The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range,and the relationship can be fitted to the pseudo-Voigt function.From analytic results we find a critical temperature existing in the relationship,which can characterize the anharmonic effects of a-plane GaN in different temperature ranges.In the range of higher temperature,the relationship exhibits an approximately linear behavior,which is consistent with the analyzed results theoretically.  相似文献   

11.
Influence of interface traps at Al2O3/(GaN)/AlGaN interface on low and high frequency capacitance of Al2O3/(GaN)/AlGaN/GaN heterostructure capacitor was studied. New features were observed in the capacitance curves. Obtained experimental results were modeled and simulated and accordance with the experiment has been obtained. For lower frequencies a new capacitance peak in the depletion and increase of the capacitance in a plateau region were measured. The capacitance peak in the depletion region was successfully explained by a capacitance response of the interface traps with U-shape density distribution. On the other hand the increase of the capacitance plateau was modeled by the homogeneous interface trap distribution. We assume that the traps located near the band edges having the highest density are able to respond to the low frequency measuring.  相似文献   

12.
<正>Sodium beta-alumina(SBA) is deposited on AlGaN/GaN by using a co-deposition process with sodium and Al2O3 as the precursors.The X-ray diffraction(XRD) spectrum reveals that the deposited thin film is amorphous.The binding energy and composition of the deposited thin film,obtained from the X-ray photoelectron spectroscopy(XPS) measurement,are consistent with those of SBA.The dielectric constant of the SBA thin film is about 50.Each of the capacitance-voltage characteristics obtained at five different frequencies shows a high-quality interface between SBA and AlGaN.The interface trap density of metal-insulator-semiconductor high-electron-mobility transistor(MISHEMT) is measured to be(3.5~9.5)×1010 cm-2·eV-1 by the conductance method.The fixed charge density of SBA dielectric is on the order of 2.7×1012 cm-2.Compared with the AlGaN/GaN metal-semiconductor heterostructure high-electronmobility transistor(MESHEMT),the AlGaN/GaN MISHEMT usually has a threshold voltage that shifts negatively. However,the threshold voltage of the AlGaN/GaN MISHEMT using SBA as the gate dielectric shifts positively from—5.5 V to—3.5 V.From XPS results,the surface valence-band maximum(VBM-EF) of AlGaN is found to decrease from 2.56 eV to 2.25 eV after the SBA thin film deposition.The possible reasons why the threshold voltage of AlGaN/GaN MISHEMT with the SBA gate dielectric shifts positively are the influence of SBA on surface valence-band maximum (VBM-EF),the reduction of interface traps and the effects of sodium ions,and/or the fixed charges in SBA on the two-dimensional electron gas(2DEG).  相似文献   

13.
We report the results of our experimental and theoretical studies concerning the temperature dependence of electron mobility in a two dimensional electron gas (2DEG) confined at the GaN/AlGaN interface. Experimental mobility of about at 3.8 K remains almost constant up to lattice temperature , it then decreases rapidly down to about at . The results are discussed using a theoretical model that takes into account the most important scattering mechanisms contributing to determine the mobility of electrons in 2DEG. We show that the polar optical phonon scattering is the dominant mechanism at high temperatures and the acoustic deformation potential and piezoelectric scatterings are dominant at the intermediate temperatures. At low temperatures, the Hall mobility is confined by both the interface roughness (IFR) and ionised impurity scattering. The correlation length (Λ) and lateral size (Δ) of roughness at the GaN/AlGaN heterointerface have been determined by fitting best to our low-temperature experimental data.  相似文献   

14.
对使用金属有机物汽相沉积法生长的AlGaN/AlN/GaN结构进行的变温霍尔测量,测量结果指出在AlN/GaN界面处有二维电子气存在且迁移率和浓度在2K时分别达到了1.4×104cm2·V-1·s-1和9.3×1012cm-2,且在200K到2K范围内二维电子气的浓度基本不变,变磁场霍尔测量发现只有一种载流子(电子)参与导电.在2K温度下,观察到量子霍尔效应,Shubnikov-de Haas (SdH) 振荡在磁场约为3T时出现,证明了此结构呈现了典型的二维电子气行为.通过实验数据对二维电子气散射过程的半定量分析,推出量子散射时间为0.23ps,比以往报道的AlGaN/GaN结构中的散射时间长,说明引入AlN层可以有效减小合金散射,进一步的推断分析发现低温下以小角度散射占主导地位.  相似文献   

15.
用X射线衍射(XRD)技术和显微Raman散射方法对金属有机化学气相沉积(MOCVD)法生长的六方相InxGa1-xN薄膜样品进行了研究,观察到了相分离现象和LO声子-等离子耦合模(LPP+),讨论了InxGa1-xN的A1(LO)模被屏蔽的主要物理机制.同时,对Raman谱中E2和A1(TO)声子模进行了分析和讨论.在InxGa1-xN样品的低温Raman谱中还观察到单电子跃迁产生的Raman散射信号. 关键词: Raman散射 X射线衍射 相分离 应力 LO声子-等离子耦合  相似文献   

16.
High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural properties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.  相似文献   

17.
张金风  王冲  张进城  郝跃 《中国物理》2006,15(5):1060-1066
It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schr\"{o}dinger--Poisson equations, theoretical investigation is carried out about the effects of donor density (0--1\times 1019cm-3 and temperature (50--500K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective \Delta Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective \Delta Ec. The Capacitance--Voltage (C-V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations.  相似文献   

18.
傅爱兵  郝明瑞  杨耀  沈文忠  刘惠春 《中国物理 B》2013,22(2):26803-026803
We propose an optically pumped nonpolar GaN/AlGaN quantum well (QW) active region design for terahertz (THz) lasing in the wavelength range of 30 μm~ 40 μm and operating at room temperature. The fast longitudinal optical (LO) phonon scattering in GaN/AlGaN QWs is used to depopulate the lower laser state, and more importantly, the large LO phonon energy is utilized to reduce the thermal population of the lasing states at high temperatures. The influences of temperature and pump intensity on gain and electron densities are investigated. Based on our simulations, we predict that with a sufficiently high pump intensity, a room temperature operated THz laser using a nonpolar GaN/AlGaN structure is realizable.  相似文献   

19.
邢海英  牛萍娟  谢玉芯 《中国物理 B》2012,21(7):77801-077801
An investigation of room-temperature Raman scattering is carried out on ferromagnetic semiconductor GaMnN films grown by metalorganic chemical vapour deposition with different Mn content values. New bands around 300 and 669 cm-1, that are not observed in undoped GaN, are found. They are assigned to disorder-activated mode and local vibration mode (LVM), respectively. After annealing, the intensity ratio between the LVM and E2(high) mode, i.e., ILVM=IE2(high), increases. The LO phonon-plasmon coupled (LOPC) mode is found in GaMnN, and the frequency of the LOPC mode of GaMnN shifting toward higher side is observed with the increase in the Mn doping in GaN. The ferromagnetic character and the carrier density of our GaMnN sample are discussed.  相似文献   

20.
研究了在GaN缓冲层中插入40 nm厚高温AlN层的GaN外延层和AlGaN/GaN异质结材料, AlN插入层可以增加GaN层的面内压应力并提高AlGaN/GaN高电子迁移率晶体管(HEMTs)的电学特性. 在精确测量布拉格衍射角的基础上定量计算了压应力的大小. 增加的压应力一方面通过增强GaN层的压电极化电场, 提高了AlGaN/GaN异质结二维电子气(2DEG)面密度, 另一方面使AlGaN势垒层对2DEG面密度产生的两方面影响相互抵消. 同时, 这种AlN插入层的采用降低了GaN与AlGaN层之间的 关键词: 高温AlN插入层 AlGaN/GaN异质结 二维电子气 应力  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号