首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张淼  王雨晨  MUHAMMADAtif  陈丽娟  王延梅 《色谱》2020,38(9):1085-1094
制备了一种对溶菌酶具有可控吸附性能的混合刷涂层毛细管,用于毛细管电泳在线富集溶菌酶以提高其检测灵敏度。首先,分别通过阳离子开环聚合和可逆加成-断裂链转移(RAFT)聚合合成聚(2-甲基-2-噁唑啉)(PMOXA)和聚丙烯酸(PAA),然后将甲基丙烯酸缩水甘油酯(GMA)分别与PMOXA和PAA通过自由基共聚和RAFT聚合合成出聚(2-甲基-2-噁唑啉)-r-甲基丙烯酸缩水甘油酯(PMOXA-r-GMA)和聚丙烯酸-b-聚甲基丙烯酸缩水甘油酯(PAA-b-PGMA)。将PMOXA-r-GMA和PAA-b-PGMA的混合溶液以一定比例加入到毛细管内,通过加热即可制备出基于PMOXA和PAA的混合刷涂层毛细管。X射线光电子能谱(XPS)对毛细管原材料的表面组成研究结果表明,当混合溶液质量浓度为20 g/L、PMOXA-r-GMA和PAA-b-PGMA质量比为1:1时,所得涂层中羧基的含量随着PAA链长的增加而增加;异硫氰酸荧光素标记溶菌酶(FITC-溶菌酶)吸附实验结果显示,通过改变环境的pH和离子强度(I)可以调控涂层毛细管对溶菌酶的吸附和释放,在pH 7(I=10-5mol/L)条件下,毛细管可以吸附大量的溶菌酶,当条件变为pH 3(I=10-1mol/L)时,吸附的溶菌酶可以被释放出来。将这种具有溶菌酶可控吸附性能的涂层毛细管用于毛细管电泳在线富集溶菌酶,当PAA链长是PMOXA链长的2.2倍时,溶菌酶的灵敏度增强因子为17.69,检出限为8.7×10-5g/L;同一天内对溶菌酶连续测定5次以及连续测定5天,峰面积的日内、日间相对标准偏差(RSD)分别为2.9%和4.1%,迁移时间的日内、日间RSD分别为0.9%和2.1%。涂层的制备只需一步,简单易行,而且涂层具有很好的稳定性。本研究为毛细管电泳分析痕量蛋白质提供了一种简单有效的方法。  相似文献   

2.
In this study we report design of stimuli-responsive coating based on poly(2-methyl-2-oxazoline-random-glycidyl methacrylate)(PMOXA-r-GMA) comb copolymer and poly(acrylic acid)-block-poly(glycidyl methacrylate)(PAA-b-PGMA) block copolymers and scrutinize its ability to control protein adsorption. Firstly, PMOXA/PAA based coatings were prepared by simply spin coating the mixture of PMOXA-r-GMA and PAA-b-PGMA copolymer solutions onto silicon substrates followed by annealing at 110 °C.Then coatings were rigorously characterized by X-ray photoelectron spectroscopy(XPS), the static water contact angle(WCA) test,ellipsometry and atomic force microscopy(AFM). After that, the relationship of switchable behavior of PMOXA/PAA based coatings with PAA content and chain length was investigated through the change of thickness and WCA upon pH and ionic strength(I) trigger,which indicated that the change in thickness and WCA was triggered when PAA contents were increased as well as by increasing chain length of PAA in PMOXA/PAA based coatings. Finally, real-time adsorption/desorption of lysozyme(Lyso) on PMOXA/PAA based coatings was monitored using quartz crystal microbalance with dissipation monitoring(QCM-D). The results showed that the Lyso adsorption amount was increased upon increasing chain length and contents of PAA in PMOXA/PAA based coatings. The adsorbed Lyso was then efficiently desorbed by changing pH and I of medium with the maximum desorption( 90% desorption percentage) observed for the suitable ratio of PMOXA and PAA while chain length of PAA was kept longer than that of PMOXA. Furthermore, the prepared coatings were found to repeatedly adsorb and desorb Lyso for four successive cycles of adsorption/desorption, which confirmed the stability of prepared coatings.  相似文献   

3.
In this work, a simple online preconcentration method for quantitative detection of pepsin was realized by using the binary mixed polymer brushes coated capillary with switchable properties toward protein adsorption. Firstly, the binary mixed polymer brushes were prepared by grafting poly(2-methyl-2-oxazoline) and poly(4-vinylpyridine) onto the inner wall of the capillary through a polydopamine anchor. Then the coatings were characterized by X-ray photoelectron spectrometer and electroosmotic flow measurement. The results indicated that the composition of coating could be controlled by varying the feed ratio of poly(2-methyl-2-oxazoline) to poly(4-vinylpyridine) and the inner surface charge could be tuned toward the change of pH and ionic strength. The results showed that when the poly(2-methyl-2-oxazoline)/poly(4-vinylpyridine) mass ratio was 80/20, the highest online preconcentration effect was obtained and the sensitivity enhancement factor was 6.3. Moreover, satisfactory sensitivity (limit of detection: 7.5 ng/mL) and good repeatability were obtained with the online preconcentration method. The polymer-coated capillary was still stable for online preconcentration and detection of pepsin after 50 consecutive runs. Last, the proposed method was used successfully to online preconcentrate pepsin in the saliva matrix.  相似文献   

4.
A novel polydopamine-graft-poly(2-methyl-2-oxazoline)(PDA-g-PMOXA) coating was prepared by immobilizing poly(2-methyl-2-oxazoline)(PMOXA) onto material surfaces through polydopamine (PDA) anchored coating for the first time.And then,the chemical composition,hydrophilicity,and protein-resistant properties of the PDA-g-PMOXA coating were studied using X-ray photoelectron spectroscopy(XPS),contact angel(CA) test,surface plasmon resonance(SPR),and quartz crystal microbalance with dissipation(QCM-D) measurement.Finally,the coating was applied to the capillary inner surface for protein separation by capillary electrophoresis(CE).  相似文献   

5.
6.
Weak polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) were assembled into {PAH/PAA}n layer‐by‐layer films on electrodes. The cyclic voltammetry (CV) response of ferrocenecarboxylic acid (Fc(COOH)) at {PAH/PAA}5 film electrodes assembled under the specific condition showed pH‐sensitive “on‐off” switching property. This property was further used to control the electrocatalytic oxidation of glucose by glucose oxidase (GOD) with Fc(COOH) as the electron transfer mediator, so that the pH‐switchable bioelectrocatalysis could be realized. The mechanism of pH‐sensitive behavior of the system was explored and believed to originate from the pH‐dependent structure change of the films.  相似文献   

7.
Understanding of the interfacial chemistry of ultrathin polymeric adlayers is fundamentally important in the context of establishing quantitative design rules for the fabrication of nonfouling surfaces in various applications such as biomaterials and medical devices. In this study, seven poly(l-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL–PMOXA) copolymers with grafting density (number of PMOXA chains per lysine residue) 0.09, 0.14, 0.19, 0.33, 0.43, 0.56, and 0.77, respectively, were synthesized and characterized by means of nuclear magnetic resonance spectroscopy (NMR). The copolymers were then adsorbed on Nb2O5 surfaces. Optical waveguide lightmode spectroscopy method was used to monitor the surface adsorption in situ of these copolymers and provide information on adlayer masses that were then converted into PLL and PMOXA surface densities. To investigate the relationship between copolymer bulk architecture (as shown by NMR data) and surface coverage as well as surface architecture, time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis was performed. Furthermore, ToF-SIMS method combined with principal component analysis (PCA) was used to verify the protein resistant properties of PLL–PMOXA adlayers, by thorough characterization before and after adlayer exposure to human serum. ToF-SIMS analysis revealed that the chemical composition as well as the architecture of the different PLL–PMOXA adlayers indeed reflects the copolymer bulk composition. ToF-SIMS results also indicated a heterogeneous surface coverage of PLL–PMOXA adlayers with high grafting densities higher than 0.33. In the case of protein resistant surface, PCA results showed clear differences between protein resistant and nonprotein-resistant surfaces. Therefore, ToF-SIMS results combined with PCA confirmed that the PLL–PMOXA adlayer with brush architecture resists protein adsorption. However, low increases of some amino acid signals in ToF-SIMS spectra were detected after the adlayer has been exposed to human serum.
Figure
?  相似文献   

8.
The adsorption of two different proteins at a planar poly(acrylic acid) (PAA) brush was studied as a function of the ionic strength of the protein solutions applying total internal reflection fluorescence (TIRF) spectroscopy. Planar PAA brushes were prepared with a grafting density of 0.11 nm(-2) and were characterized using X-ray reflectometry. Hen egg-white lysozyme and bovine serum albumin (BSA) were used as model proteins, which have a net positive and negative charge at neutral pH-values, respectively. It has been found that both proteins adsorb strongly at a planar PAA brush at low ionic strength. Whereas lysozyme interacts with a PAA brush under electrostatic attraction at neutral pH-values, BSA binds under electrostatic repulsion at pH > 5. Even at pH = 8, significant amounts of BSA are adsorbed to a planar PAA brush. In addition, the reversibility of BSA adsorption has been characterized. Dilution of a BSA solution leads to an almost complete desorption of BSA from a PAA brush at short contact times. When the ionic strength of the protein solutions is increased to about 100-200 mM, a planar PAA brush appears largely protein-resistant, regardless of the protein net charge. The results of this study indicate that the salt-dependent protein affinity of a PAA brush represents a unique effect that must be explained by a novel protein-binding mechanism. On the basis of a recent model, it is suggested that a release of counterions is the most probable driving force for protein adsorption at a PAA brush. In a general view, this study characterizes a planar PAA brush as a new materials coating for the controlled immobilization of proteins whose use in biotechnological applications appears to be rewarding.  相似文献   

9.
Surface coatings with so-called protein-repellent or nonfouling polymers have become indispensable for the development of modern therapeutic and diagnostic medical devices such as biosensors, drug-delivery capsules, and biomedical implants. Nowadays, poly(ethylene glycol) (PEG) is routinely used for these purposes. However, there is increasing evidence that PEG has limited long-term stability, particularly in vivo. Here we investigate poly(2-methyl-2-oxazoline) (PMOXA) as a potential alternative polymer. We designed comb copolymers consisting of a polycationic poly(l-lysine) backbone and PMOXA side chains by analogy to precisely studied and highly protein-repellent PEG-based systems. Using optical waveguide lightmode spectroscopy, we quantitatively compare the in situ self-assembly of the comb copolymers on negatively charged surfaces and the exposure of the formed monolayers to full human serum. We find that the PMOXA-based coatings with an optimal side-chain grafting density eliminate protein adsorption to a level of <2 ng/cm2; that is, they quantitatively equal the protein-repellent properties of the best PEG-based coatings.  相似文献   

10.
Fe3O4/chitosan/poly(acrylic acid) (Fe3O4/CS/PAA) composite particles, which are reusable, biodegradable and of high adsorption capacity, have been prepared through polymerizing acrylic acid in chitosan and Fe3O4 nanoparticles aqueous solution. By varying in-feed mole ratio of carboxyl to amino group (nc/na) and reactant concentration, the average diameter of Fe3O4/CS/PAA composite particles can be controlled to vary from 100 to 300 nm. FT-IR, XRD and TEM were used to characterize Fe3O4/CS/PAA composite particles. Results showed that Fe3O4 was indeed incorporated into CS/PAA particles. The composite particles showed high efficient to remove copper ions (II) in aqueous solution. Adsorption kinetic studies showed that the adsorption process followed a pseudo-second-order kinetic model and the equilibrium data agreed well with the Langmuir model. The saturated adsorption capacity obtained from the experimental was 193 mg/g in close to proximity to the data 200 mg/g calculated from Langmuir model. The saturated adsorption capacity still retained 100 mg/g after three cycles of adsorption–desorption of copper ions (II).  相似文献   

11.
王雨晨  王延梅 《色谱》2020,38(9):1022-1027
毛细管电泳作为一种常见的液相分离技术,因其分析速度快、分离效率高、样品消耗量少等特点,在蛋白质分离分析领域有广泛应用。然而,常用的熔融硅毛细管容易吸附蛋白质,导致电渗流不稳定,分离结果重现性变差;此外,商用毛细管电泳中常用的紫外检测器由于光程短,使得毛细管电泳的检测灵敏度往往不能达到低丰度蛋白质的直接分析要求。因此寻找能够阻止蛋白质吸附、同时能够提高检测灵敏度的涂层是毛细管电泳分离分析蛋白质的重要课题之一。聚(2-甲基-2-噁唑啉)(PMOXA)作为一种类肽类亲水性聚合物,具有与抗蛋白质吸附聚合物聚乙二醇类似的亲水性、抗蛋白质吸附性和生物相容性,而且其类肽结构使之具有较聚乙二醇更好的稳定性,因此近年来在生物质传递、药物载体和阻抗蛋白质吸附等领域得到越来越多的应用。该文主要从两个方面对聚(2-甲基-2-噁唑啉)在毛细管电泳中的应用进行了阐述。一是利用多巴胺作为黏合层将其涂覆在毛细管内壁作为抗蛋白质吸附涂层,这种涂层不仅能成功分离多种蛋白质的混合物(如溶菌酶、细胞色素C、核糖核酸酶A和α-胰凝乳蛋白酶原A),而且在定量检测奶粉中三聚氰胺、乳铁蛋白的过程中,能阻抗其他蛋白质的非特异性吸附,提高了毛细管电泳对奶粉中三聚氰胺、乳铁蛋白的检测效率。二是将其与具有刺激响应性的聚合物(如聚丙烯酸)构成二元混合刷涂层,在一定的pH和离子强度条件下,涂层可吸附目标蛋白质(如牛血清白蛋白、溶菌酶),在另一pH和离子强度条件下可将吸附的目标蛋白质全部释放,同时在释放过程中,处于涂层表面的聚(2-甲基-2-噁唑啉)会进一步阻止蛋白质的吸附,释放的蛋白质在电渗流和电泳的双重作用下快速迁移,到达检测器的蛋白质瞬时浓度大大增加,使目标蛋白质得到富集,目标蛋白质的检测信号得到放大,从而达到了提高低丰度蛋白质检测灵敏度的目的。此外,该文还对聚(2-甲基-2-噁唑啉)在毛细管电泳分离蛋白质中的未来发展趋势进行了展望。  相似文献   

12.
We performed neutron reflectometry (NR) and total internal reflection fluorescence (TIRF) spectroscopy to characterize the structure and the protein binding capacity of a planar poly(acrylic acid) (PAA) brush at different temperatures. A PAA brush was prepared by spin-coating planar quartz or silicon wafers with a thin film of poly(styrene). Then, the diblock copolymer poly(styrene)-poly(acrylic acid) was deposited on these modified wafers using the Langmuir-Sch?fer or Langmuir-Blodgett technique. PAA grafting densities of about 0.1 chains per nm2 were obtained. The NR experiments indicate a remarkable swelling of the PAA brush in contact with a buffer solution, when it is heated to 40 degrees C for several hours. The swollen brush structure remains upon cooling back to 20 degrees C suggesting a disentanglement of the initially formed PAA brush by the temporary heating. At pD = 6.7, the protein bovine serum albumin (BSA) with a negative net charge is strongly adsorbed to the swollen PAA brush. From the scattering length density profiles obtained from the NR curves, an almost homogeneous filling of the whole PAA brush space with BSA molecules can be deduced corresponding to an average BSA volume fraction of about 7-10% and an adsorbed protein mass of about 1.4 mg m-2. By analyzing the TIRF experiments, it is found that BSA adsorption is enhanced when increasing the temperature which represents an evidence for an entropic driving force for protein adsorption. However, the mechanism of BSA adsorption at a PAA brush appears to be different at 20 and 40 degrees C.  相似文献   

13.
《Thermochimica Acta》1991,184(2):183-191
The thermal degradation of a series of 18 copolymers corresponding to poly(p-methoxy-phenylmaleimide-co-2-methyl-2-oxazoline), poly(p-methoxyphenylmaleimide-co-2-ethyl-2-oxazoline), poly(p-nitrophenylmaleimide-co-2-methyl-2-oxazoline) and poly(p-nitrophenyl-maleimide-co-2-ethyl-2-oxazoline) has been invesugated using thermogravimetry in the temperature range 20–500 ° C. All the copolymers degrade in one step. The kinetic parameters Ea, n and A have been calculated. The thermal stability depends on the copolymer composition.  相似文献   

14.
Summary: Reversible pH‐induced swelling of (PAH/PSS) polyelectrolyte microcapsules is accompanied by increased porosity, making them permeable to poly(acrylic acid) (PAA) at pH values higher than 11.2. This pH‐switchable permeability was used to encapsulate the polyanion in alkaline conditions. Relationship between starting PAA concentration in solution and amount finally being encapsulated has been established and can be used further as calibration curve. A desired amount of encapsulated polymer in the picogram range per capsule can be achieved. The loaded capsules were then used as microreactors by forming a complex between the PAA and Ca2+ ions.

General scheme for pH‐induced encapsulation of (PAA) in alkali condition by switching their permeability.  相似文献   


15.
The interaction of the proteins bovine serum albumin (BSA), lysozyme (Lys), lactoferrin (Lf), and fibronectin (Fn) with surfaces of protein-resistant poly(ethylene oxide) (PEO) and protein-adsorbing poly(acrylic acid) (PAA) fabricated by plasma-enhanced chemical vapor deposition has been studied with quartz crystal microbalance with dissipation monitoring (QCM-D). We focus on several parameters which are crucial for protein adsorption, i.e., the isoelectric point (pI) of the proteins, the pH of the solution, and the charge density of the sorbent surfaces, with the zeta-potential as a measure for the latter. The measurements reveal adsorption stages characterized by different segments in the plots of the dissipation vs frequency change. PEO remains protein-repellent for BSA, Lys, and Lf at pH 4-8.5, while weak adsorption of Fn was observed. On PAA, different stages of protein adsorption processes could be distinguished under most experimental conditions. BSA, Lys, Lf, and Fn generally exhibit a rapid initial adsorption phase on PAA, often followed by slower processes. The evaluation of the adsorption kinetics also reveals different adsorption stages, whereas the number of these stages does not always correspond to the structurally different phases as revealed by the D- f plots. The results presented here, together with information obtained in previous studies by other groups on the properties of these proteins and their interaction with surfaces, allow us to develop an adsorption scenario for each of these proteins, which takes into account electrostatic protein-surface and protein-protein interaction, but also the pH-dependent properties of the proteins, such as shape and exposure of specific domains.  相似文献   

16.
A series of poly(acrylic acid-co-acrylamide) (PAA)/SiO2 hybrid hydrogels were prepared by in situ frontal polymerization. It was found that the increase in the concentration of SiO2 nanoparticles could lead to the increase in front velocity (V f) and the highest front temperature (T max). This may be attributed to the fact that SiO2 nanoparticles could increase the liquid viscosity of reaction mixture. The obtained PAA/SiO2 hybrid hydrogels were characterized by SEM and Fourier transform infrared spectroscopy spectrum and swelling measurements. The pH-sensitive swelling behaviors showed that the prepared PAA/SiO2 hybrid hydrogel had high pH sensitivity in different pH buffer solutions. Mechanical property test indicated that the PAA/SiO2 hybrid hydrogels exhibited a high compressive strength while remaining a high swelling radio (SR). The maximum of compressive strength and SR of the hybrid hydrogel may reach 42.6 kPa and 17.8, respectively, which was much higher than that of pure PAA hydrogel.  相似文献   

17.
聚丙烯酸在纳米TiO2表面吸附行为的研究   总被引:1,自引:0,他引:1  
讨论了聚丙烯酸在纳米TiO2水悬浮体系中的吸附行为.红外光谱分析和吸附实验结果表明,纳米TiO2通过氢键吸附PAA.PAA吸附量随着浓度的升高而增大直至饱和吸附量,且分子量越大,饱和吸附量越大.pH值增大,则饱和吸附量减小.在相同条件下,表面吸附层的厚度随PAA分子量、浓度和pH值增大而增大.这是由PAA在颗粒表面构型的变化所致.吸附PAA后的纳米TiO2的表面电荷密度和ζ电位发生变化,pHiep值向低值方向移动.表面吸附自由能的计算结果说明,PAA在纳米TiO2表面的吸附是自发过程.  相似文献   

18.
In the present work, pH-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) blends as well as hydrogels based on poly(N-isopropylacrylamide) (PNIPAAm), which are sensitive to organic solvent concentration in aqueous solutions, were used in silicon micromachined sensors. A sensitivity of approximately 15 mV/pH was obtained for a pH sensor with a 50 μm thick PVA/PAA hydrogel layer in a pH range above the acid exponent of acrylic acid (pKa=4.7). The output voltage versus pH-value characteristics and the long-term signal stability of hydrogel-based sensors were investigated and the measurement conditions necessary for high signal reproducibility were determined. The influence of the preparation conditions of the hydrogel films on the sensitivity and response time of the chemical and pH sensors is discussed.  相似文献   

19.
Novel linear polymer/dendrimer block copolymers, poly(2-methyl-2-oxazoline)-block-poly(amido amine) dendrimers (water-soluble full-generation type 4 (G = 4.0 and 5.0) and amphiphilic half-generation type 5 (G = 3.5, 4.5, and 5.5)), were synthesized by divergent-growth dendrimer construction with ω-ethylenediamine-terminated poly(2-methyl-2-oxazoline), which was prepared by living ring-opening polymerization of 2-methyl-2-oxazoline. Assembly of the amphiphilic dendrimer-based block copolymer (G = 5.5) was investigated by surface tension measurements (critical micelle concentration, 0.49 wt.-%) and by small-angle neutron scattering analysis (spherical particles; assembled number, ca. 103).  相似文献   

20.
Hydrogen-bonded polymer complex films with the thickness ranging from 50 nm to 2400 nm were prepared by layer-by-layer (LbL) assembly of poly(2-ethyl-2-oxazoline) (PEOX) and poly(acrylic acid) (PAA). The dewetting behavior of PEOX/PAA films under hydrothermal condition was investigated. It was found that the dewetting occurred at solid-liquid interface, and the typical morphologies such as holes, irregular cellular structure, and droplets were observed. Atomic force microscopy (AFM) revealed the initial rupture of the film. Microscopic Raman and infrared (IR) imaging demonstrated that the PEOX and PAA chains remained association during the dewetting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号