首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The recently discovered twisted graphene has attracted considerable interest. A simple chemical route was found to prepare twisted graphene by covalently linking layers of exfoliated graphene containing surface carboxyl groups with an amine-containing linker (trans-1,4-diaminocyclohexane). The twisted graphene shows the expected selected area electron diffraction pattern with sets of diffraction spots out with different angular spacings, unlike graphene, which shows a hexagonal pattern. Twisted multilayer graphene oxide could be prepared by the above procedure. Twisted boron nitride, prepared by cross-linking layers of boron nitride (BN) containing surface amino groups with oxalic acid linker, exhibited a diffraction pattern comparable to that of twisted graphene. First-principles DFT calculations threw light on the structures and the nature of interactions associated with twisted graphene/BN obtained by covalent linking of layers.  相似文献   

2.
We explored the aspirin adsorption and their hydrogen evolution reaction (HER) activity in waste water of borocarbonitride sheets. Our results indicate that BCN sheets considered here show HER activity and exhibit superior performance regarding adsorption of aspirin in waste water in comparison with graphene and hexagonal boron nitride (h-BN). The drug molecule (aspirin) possesses a strong affinity to BCN, with the order of binding energy on following the order BCN∼h-BN>graphene. Upon drug adsorption, the band gap of h-BN is found to be reduced by up to 33 %, whereas the bandgaps of graphene and BCN remain unaltered that makes BCN a potential candidate for HER in waste water.  相似文献   

3.
A density‐functional study has been undertaken to investigate the chemical properties of in‐plane heterostructures of graphene and hexagonal boron nitride. The interactions of armchair and zigzag linking edges with oxygen are looked at in detail. The results of the calculations indicate that the linking edges are highly reactive to oxygen atoms and predict that oxygen molecules can accordingly be adsorbed dissociatively. Furthermore, because oxygen atoms cooperatively interact with the heterostructures, the process can lead to opening of the linking edges, thus splitting the two materials.  相似文献   

4.
The reliable information about interface energetics of organic materials, especially the energy level alignment at organic heterostructures is of pronounced importance for unraveling the photon harvesting and charge separation process in organic photovoltaic(OPV) cells. This article provides an overview of interface energetics at typical planar and mixed donor-acceptor heterostructures, perovskite/organic hybrid interfaces, and their contact interfaces with charge collection layers. The substrate effect on energy level offsets at organic heterostructures and the processes that control and limit the OPV operation are presented. Recent efforts on interface engineering with electrical doping are also discussed.  相似文献   

5.
Photocatalytic (PC) and photoelectrochemical (PEC) water splitting is a plethora of green technological process, which transforms copiously available photon energy into valuable chemical energy. With the augmentation of modern civilization, developmental process of novel semiconductor photocatalysts proceeded at a sweltering rate, but the overall energy conversion efficiency of semiconductor photocatalysts in PC/PEC is moderately poor owing to the instability ariseing from the photocorrosion and messy charge configuration. Particularly, layered double hydroxides (LDHs) as reassuring multifunctional photocatalysts, turned out to be intensively investigated owing to the lamellar structure and exceptional physico-chemical properties. However, major drawbacks of LDHs material are its low conductivity, sluggish mass transfer and structural instability in acidic media, which hinder their applicability and stability. To surmount these obstacles, the formation of LDH@graphene and analogus heterostructures could proficiently amalgamate multi-functionalities, compensate distinct shortcomings, and endow novel properties, which ensure effective charge separation to result in stability and superior catalytic activities. Herein, we aim to summarize the currently updated synthetic strategies used to design heterostructures of 2D LDHs with 2D/3D graphene and graphene analogus material as graphitic carbon nitride (g-C3N4), and MoS2 as mediator, or interlayer support, or co-catalyst or vice versa for superior PC/PEC water splitting activities along with long-term stabilities. Furthermore, latest characterization technique measuring the stability along with variant interface mode for imparting charge separation in LDH@graphene and graphene analogus heterostructure has been identified in this field of research with understanding the intrinsic structural features and activities.  相似文献   

6.
The effect of an octagonal lattice configuration on a boron nitride nanotube is explored using first principle calculations. Calculations show that the formational energy of an octagonal boron nitride nanotube (o‐BNNT) is an exothermic reaction. Boron and nitrogen atoms within an o‐BNNT have an average of 2.88 electrons and 9.09 electrons, respectively, indicating ionic‐like bonding. In addition, the electronic structure of the octagonal boron nitride nanotube shows semiconductive properties, while h‐BNNT is reported to be an insulator. Additional o‐BNNTs with varying diameters are calculated where the results suggest that the diameter has an effect on the binding energy and bandgap of the o‐BNNT. The defect sites of the o‐BNNT are reactive against hydrogen where a boron defect is particularly reactive. Thus, this work suggests that physical and chemical properties of a boron nitride nanotube can be tailored and tuned by controlling the lattice configuration of the nanotube.  相似文献   

7.
Large area single and bilayer graphene are grown on Pt/Ti/SiO2 substrates by hot filament chemical vapor deposition (HFCVD) with and without the assistance of Cu foil. The quality and number of graphene layers deposited on the substrate are assessed by Raman Spectroscopy. Atomic Force Microscopy (AFM) is used for assessing the surface topography of the graphene films grown on the Pt/Ti/SiO2 substrates. The microstructure and elemental analyses are performed by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The results show that bilayer graphene growth is facilitated by a copper foil placed nearby Pt/Ti/SiO2 substrate and by a high filament temperature in the HFCVD reactor. Monolayer graphene grows only when no copper foil is placed near the Pt/Ti/SiO2 substrate at a low filament temperature. The approach paves a novel pathway towards the layer-controlled growth of graphene on Pt/Ti/SiO2 substrates by HFCVD for frontier applications.  相似文献   

8.
9.
Two boron nitride (BN) nanostructures, the bamboo-like nanotubes and nanothorns where the nanosize h-BN layers are randomly stacked looking like thorns, were synthesized selectively via thermal chemical vapor deposition of B/B(2)O(3) under the NH(3) flow at 1200 degrees C. Electron energy-loss spectroscopy reveals the N-rich h-BN layers with a ratio of B/N = 0.75-0.85. Angle-resolved X-ray absorption near edge structure of these two N-rich nanostructures has been compared with that of h-BN microcrystals. The pi transition in the N K-edge shifts to the lower energy by 0.8-1.0 eV from that of h-BN microcrystals, and the second-order signals of N 1s electrons become significant. We suggest that the N enrichment would decrease the band gap of nanostructures from that of h-BN microcrystals. The Raman spectrum shows the peak broadening due to the defects of N-rich h-BN layers.  相似文献   

10.
Results of the study of structural and electronic properties of the 8-ZGNR/h-BN(001) heterostructure by the pseudopotential method using plane waves within density functional theory are presented. Within one approximation the features of the spin state at the Fermi level are studied along with the role of the edge and substrate effects in the opening of the energy gap in the 8-ZGNR/h-BN(001) heterostructure in both ferromagnetic and antiferromagnetic orderings. The effect of a substrate made of hexagonal boron nitride was found for the first time. It consists in the opening of the energy gap in the π electron spectrum of the 8-ZGNR/h-BN(001) heterostructure for the ferromagnetic spin ordering. It is shown that the gap was 30 meV. Contributions of the edge effects of the graphene nanoribbon and the substrate to the energy gap formation are differentiated for the first time. It is found that in the 8-ZGNR/h-BN(001) heterostructure the dominant role in the opening of the energy gap at the Fermi level is played by the edge effects. However, when the nanoribbon width decreases, e.g., to six dimmers the substrate role in the gap opening increases and amounts to 45%. Local magnetic moments of carbon atoms are estimated. It is shown that small magnetic moments are induced on boron and nitrogen atoms at the interface.  相似文献   

11.
We have analyzed the modifications of interaction energy between a molecule of hydrogen and graphene layers partially substituted by boron. We show that the presence of boron modifies the symmetry of the energy landscape. It is due to both the larger boron size (with respect to carbon) and its stronger interaction with hydrogen molecules. The changes of energy surface are not confined to the neighborhood of substituted sites but extend over several graphene carbon sites, making the surface more heterogeneous. We show that the average increase of adsorption energy could meet DOE targets for hydrogen storage if a partial charge transfer between boron and hydrogen occurs during adsorption.  相似文献   

12.
The physisorption of water on graphene is investigated with the hybrid density functional theory (DFT)‐functional B3LYP combined with empirical corrections, using moderate‐sized basis sets such as 6‐31G(d). This setup allows to model the interaction of water with graphene going beyond the quality of classical or semiclassical simulations, while still keeping the computational costs under control. Good agreement with respect to Coupled Cluster with singles and doubles excitations and perturbative triples (CCSD(T)) results is achieved for the adsorption of a single water molecule in a benchmark with two DFT‐functionals (Perdew/Burke/Ernzerhof (PBE), B3LYP) and Grimme's empirical dispersion and counterpoise corrections. We apply the same setting to graphene supported by epitaxial hexagonal boron nitride (h‐BN), leading to an increased interaction energy. To further demonstrate the achievement of the empirical corrections, we model, entirely from first principles, the electronic properties of graphene and graphene supported by h‐BN covered with different amounts of water (one, 10 water molecules per cell and full coverage). The effect of h‐BN on these properties turns out to be negligibly small, making it a good candidate for a substrate to grow graphene on. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The adsorption of atomic hydrogen on hexagonal boron nitride (h-BN) is studied using two element-specific spectroscopies, i.e., near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and x-ray photoelectron spectroscopy (XPS). B K-edge NEXAFS spectra show a clear change in the energy region of the π* band before and after reaction with atomic deuterium. On the other hand, N K-edge NEXAFS spectra show only a little change. B 1s XPS spectra show a distinct component at the low binding energy side of a main component, while N 1s XPS spectra show peak broadening at the high binding energy side. These experimental results are analyzed by the discrete variational Xα method with a core-hole effect and are explained by a model in which hydrogen atoms are preferentially adsorbed on the B sites of h-BN. Based on the experimental and theoretical results, we propose a site-selective property of BN material on adsorption of atomic hydrogen.  相似文献   

14.
The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides, WS2/MoS2, has awakened great interest owing to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here, a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3S4-core cluster, giving rise to a homogeneous distribution of the clusters over the layers. In a second step, a calcination of this molecular/2D heterostructure under N2 leads to the formation of clean WS2/MoS2 heterostructures, where the photoluminescence of both counterparts is quenched, proving an efficient interlayer coupling. Thus, this chemical method combines the advantages of a solution approach (simple, scalable, and low-cost) with the good quality interfaces reached by using more complicated traditional physical methods.  相似文献   

15.
Russian Journal of Applied Chemistry - In this report, hexadecylamine (HDA) as a Lewis base was used to prepare exfoliated layers of modified hexagonal boron nitride h-BN (mh-BN) via two distinct...  相似文献   

16.
Adsorption of Fe, Co and Ni atoms on a hybrid hexagonal sheet of graphene and boron nitride is studied using density functional methods. Most favorable adsorption sites for these adatoms are identified for different widths of the graphene and boron nitride regions. Electronic structure and magnetic properties of the TM-adsorbed sheets are then studied in detail. The TM atoms change the electronic structure of the sheet significantly, and the resulting system can be a magnetic semiconductor, semi-metal, or a non-magnetic semiconductor depending on the TM chosen. This gives tunability of properties which can be useful in novel electronics applications. Finally, barriers for diffusion of the adatoms on the sheet are calculated, and their tendency to agglomerate on the sheet is estimated.  相似文献   

17.
The adsorption of atomic and molecular hydrogen on carbon-doped boron nitride nanotubes is investigated within the ab initio density functional theory. The binding energy of adsorbed hydrogen on carbon-doped boron nitride nanotube is substantially increased when compared with hydrogen on nondoped nanotube. These results are in agreement with experimental results for boron nitride nanotubes (BNNT) where dangling bonds are present. The atomic hydrogen makes a chemical covalent bond with carbon substitution, while a physisorption occurs for the molecular hydrogen. For the H(2) molecule adsorbed on the top of a carbon atom in a boron site (BNNT + C(B)-H(2)), a donor defect level is present, while for the H(2) molecule adsorbed on the top of a carbon atom in a nitrogen site (BNNT + C(N)-H(2)), an acceptor defect level is present. The binding energies of H(2) molecules absorbed on carbon-doped boron nitride nanotubes are in the optimal range to work as a hydrogen storage medium.  相似文献   

18.
The chemical adsorption of H atoms on an (8,0) zigzag boron nitride nanotube is studied using the density functional theory with the supercell method. One to four H atoms per 32 B and 32 N are considered. The results show that H atoms prefer to adsorb on the top sites of adjacent B and N atoms to form an armchair chain along the tube axis. An even-odd oscillation behavior of the adsorption energy of H atoms on the tube is found, and the average adsorption energy of even H atoms is obviously bigger than that of odd H atoms. The results can be understood with the frontier orbital theory. Based on this adsorption behavior, several high-symmetric structures of H adsorbed boron nitride nanotubes with 50% and 100% coverages are studied. The pairs of lines' pattern with 50% coverage has the biggest average adsorption energy per H(2) among the chosen configurations, corresponding to approximately 4 wt % hydrogen storage.  相似文献   

19.
In this paper, GO-BN(graphene oxide grafted boron nitride) was synthesized from graphene oxide and boron nitride by silane coupling agent KH550. Furthermore, GO-BN and intumescent flame retardant (IFR) were added into natural rubber (NR) simultaneously to improve its flame retardancy. The structure of GO-BN was studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The analysis showed that GO-BN was successfully synthesized. The enhanced flame retardancy performance of flame retardant natural rubber (FRNR) was evaluated by limiting oxygen index (LOI) and UL-94 tests. Moreover, the combustion action of FRNR in fire was evaluated by cone calorimetry. Notably, the results showed that the sample with a GO-BN content of 12 phr showed the best flame retardancy performance. The heat release rate (HRR) and total heat release rate (THR) were remarkably decreased by 42.8% and 19.4%, respectively. Carbon residues were analyzed by infrared spectroscopy and scanning electron microscopy, which showed that GO-BN and IFR had a synergistic catalytic effect. The formation of compact thermal stable carbon layer after combustion was the key to protect engineering materials from combustion.  相似文献   

20.
近年来,随着各领域对微电子器件集成度及性能要求的不断提高,发展基于二维半导体材料的新型高性能功能性器件成为了突破当前技术瓶颈的重要环节和关键方向。目前,作为新型二维半导体材料的代表,二维过渡金属二硫化物、二维黑磷以及范德瓦尔斯异质结凭借其在电学、热学、机械、光学等方面的优异性能已经成为了发展高性能纳米电子器件和光电器件的最具潜力的材料之一。在本综述中,首先概述了几种用于纳米器件的常见二维材料,分析了材料的结构、性能及其在纳米器件中的应用,其次重点对基于过渡金属二硫化物、黑磷以及由其衍生的范德瓦尔斯异质结的纳米电子器件和光电器件的最新研究进展进行讨论,最后对目前二维半导体纳米器件所面临的挑战以及未来的发展方向进行总结及分析,从而为未来发展高性能功能性纳米器件提供支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号