首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atrazine imprinted synthetic polymers were prepared using a combination of methacrylic acid and 2-sulfoethyl methacrylate that bound and converted atrazine and other 6-chlorotriazine herbicides to less toxic compounds. A chloride at the 6-position of the triazines was converted to a methoxy group by the polymer in a methanol-containing solvent, where the imprinting effects enhanced the catalytic activity. Competitive inhibition of the atrazine methanolysis was observed in the presence of a structurally related binder, ametryn, suggesting that the catalytic reaction proceeded in the binding sites generated by the molecular imprinting process.  相似文献   

2.
A novel synthetic dopamine receptor bearing bidentate binding sites were prepared by covalent imprinting using a disulfide linkage which is cleaved and oxidized to a non-covalent sulfoxide recognition group. The used templates have dopamine-like structures connected to an allyl moiety via a disulfide and to a 4-vinylphenyl group via a cyclic boronic diester. After the polymerization, the ester bonds were hydrolyzed and the disulfide bond was reduced to remove the template moiety from the polymer matrix, followed by the oxidation to transform the thiol residues into sulfonic acid (post imprinted process). The imprinted polymer adsorbed dopamine selectively in aqueous solution with the two-point interaction, i.e. the formation of cyclic boronic diester and electrostatic interaction with the sulfonic acid residue.  相似文献   

3.
Smectic Liquid‐crystalline (LC) polysiloxanes P1P7 were prepared using cholesteryl 6‐undec‐10‐enoyloxy‐naphthalene‐2‐carboxylate and cholesteryl 3‐sulfo‐4‐undec‐10‐enoyloxy‐benzoate in a one‐step reaction with sulfonic acid group contents ranging between 0 and wt 4.39%. With an increase of sulfonic acid groups, the glass transition temperature rose slightly; while the temperature of clear point decreased. As sulfonic groups increased, H‐bonding interaction strengthened, resulting in an increase of glass transition temperature. On the other hand, aggregates of H‐bond derived from sulfonic acids would destroy the homogeneous rigid moieties and the high‐ordered structure, resulting in a temperature of clear point decreased. In X‐ray measurement, all the polymers displayed sharp strong peaks around 2θ≈2.6° and broad peaks around 2θ ≈16.6°. The broad peaks at wide‐angle are similar, but there is great different at low angles. For the polymer without sulfonic acid, the only one strong peak at low angle indicates high‐ordered lamellar structure due to homogeneous rigid moieties. For the polymers containing more sulfonic acid, two sharp peaks appeared at low angles, and the intensities of these two peaks varied. With increase of sulfonic acid groups in the polymer systems, the hydrogen‐bonding aggregates in domains would divide the homogeneous rigid mesogens into two kinds of nanophases, that is, one containing non H‐bond mesogens and another involving H‐bonding aggregated mesogens. These two different nanophases result in different lamellar spacings.  相似文献   

4.
Complexation of some lanthanide ions with poly(methacrylic acid) and its copolymers was studied by potentiometric titration. Poly [methacrylic acid-co-oligo(ethylene oxide)methacrylate] and poly(methacrylic acid-co-acrylamide) formed tris-carboxylate coordinate lanthanide complexes with large overall complexation constants, while poly-(methacrylic acid)s and copolymer with higher content of the methacrylic acid residue formed bis-coordinate ones. It was concluded that the comonomer residues in the copolymer chains decreased the steric hindrance for the complexation and/or acted as co-coordinating groups of the carboxylic group to lanthanide ions. Very large positive and favorable entropy changes were observed for the complexation with poly(methacrylic acid) and its copolymers. This contribution of thermodynamic parameters to the complexation was contrary to that for the analogous monomeric methacrylic acid complex and is assumed to be induced by dehydration of the polymers through the lanthanide ion complexation.  相似文献   

5.
Atrazine molecularly imprinted polymer microspheres (MIPMs) were fabricated by two step seed swelling polymerization method, using atrazine as a template molecule, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a crosslinking agent and toluene/dodecanol as a porogenic agent and a series of MIPMs with even particle size of 3‐5 μm and good dispersivity could be obtained under the optimal condition. Equilibrium binding experiments were comparably studied about the binding capacity of the resulted polymers. We packed the polymers into empty chromatographic steel tube columns (2.1 mm I.D. × 10 cm) to prepare liquid chromatographic columns used for the evaluation of specificity with similar structure compounds. The proposed method has been successfully applied to the determination of limited atrazine in water samples. The results showed that a good linear relationship of atrazine was maintained within 0.1‐20 mg/L (r = 0.9992), the sample recovery was in a range of 92.1‐102.0%, with a RSD lower than 5% (n = 6) and a detection limit of 0.041 mg/L.  相似文献   

6.
The quantum chemical method was applied for screening functional monomers in the rational design of salbutamol‐imprinted polymers. Salbutamol was the template molecule, and methacrylic acid was the single functional monomer. The LC‐WPBE/6–31G(d,p) method was used to investigate the geometry optimization, active sites, natural bond orbital charges, binding energies of the imprinted molecule, and solvation energy. The mechanism of action between salbutamol and methacrylic acid was also discussed. The theoretical results show that salbutamol interacts with functional monomers by hydrogen bonds, and the salbutamol‐imprinted polymers with a ratio of 1:4 (salbutamol/methacrylic acid) in acetonitrile had the highest stability. The salbutamol‐imprinted polymers were prepared by precipitation polymerization. The experimental results indicated that the maximum adsorption capacity for salbutamol toward molecularly imprinted polymers was 7.33 mg/g, and the molecularly imprinted polymers had a higher selectivity for salbutamol than for norepinephrine and terbutaline sulfate. Herein, the studies can provide theoretical and experimental references for the salbutamol molecular imprinted system.  相似文献   

7.
Trichosanthes trypsin inhibitor (TTI) is a peptide consisting of 27 amino acid residues with three pairs of disulfide bonds. This paper reports the total synthesis and disulfide bond refolding of this inhibitor and its analogue. After purification, the amino acid sequence and stoichiometrical inhibitory activity against trypsin of the synthetic inhibitor were compatible with those of the natural inhibitor. The analogue of this inhibitor in which residue Met in position 6 was replaced by Ala was also synthesized. The antitrypsin activity of this synthetic analogue was also approximate to that of the natural inhibitor.  相似文献   

8.
Trichosanthes trypsin inhibitor (TTI) is a peptide consisting of 27 amino acid residues with three pairs of disulfide bonds. This paper reports the total synthesis and disulfide bond refolding of this inhibitor and its analogue. After purification, the amino acid sequence and stoichiometrical inhibitory activity against trypsin of the synthetic inhibitor were compatible with those of the natural inhibitor. The analogue of this inhibitor in which residue Met in position 6 was replaced by Ala was also synthesized. The antitrypsin activity of this synthetic analogue was also approximate to that of the natural inhibitor.  相似文献   

9.
Okutucu B  Telefoncu A 《Talanta》2008,76(5):1153-1158
Molecularly imprinted polymers using serotonin as the template molecule was prepared for selective recognition from platelet rich plasma by non-covalent imprinting approach. Four different monomers (methacrylic acid, acrylamide, 4-vinylpyridine and 2-acrylamido-2-methylpropane sulfonic acid) and acetonitrile and DMSO as porogen were investigated for the first time by bulk polymerization. The molecularly imprinted polymer which was prepared by acrylamide/methacrylic acid had the largest imprinting factor for serotonin. The affinity and specificity of these polymers were evaluated by equilibrium binding experiments. The effect of polarity of the solvents was examined by polymers binding capacity and imprinting factor. According to the Scatchard analysis the K(d) and Q(max) values were calculated as 1.95 micromoll(-1) and 19.129 micromolg(-1), respectively. The polymer was tested to evaluate serotonin from platelet rich plasma and 70% serotonin recovery was found.  相似文献   

10.
Ordered mesoporous silicas functionalized with alkylsulfonic acid and thiol group pairs have been shown to catalyze the synthesis of bisphenols from the condensation of phenol and various ketones, with activity and selectivity highly dependent on the distance between the acid and thiol. Here, a new route to thiol/sulfonic acid paired catalysts is reported. A bis-silane precursor molecule containing both a disulfide and a sulfonate ester bond is grafted onto the surface of ordered mesoporous silica, SBA-15, followed by simultaneous disulfide reduction and sulfonate ester hydrolysis. The resulting catalyst, containing organized pairs of arylsulfonic acid and thiol groups, is significantly more active than the alkylsulfonic acid/thiol paired catalyst in the synthesis of bisphenol A and Z, and this increase in activity does not lead to a loss of regioselectivity. The paired catalyst has activity similar to that of a randomly bifunctionalized arylsulfonic acid/thiol catalyst in the bisphenol A reaction but exhibits greater activity and selectivity than the randomly bifunctionalized catalyst in the bisphenol Z reaction.  相似文献   

11.
Innovative Pd0 heterogeneous catalysts were prepared upon using cross-linked, gel-type, functional acrylic polymers as the supports, along a simple route in use in our laboratories since long. The supports were obtained by polyaddition co-polymerization of N,N-dimethylacrylamide with either 2-acrylamido-2-methylpropane sulfonic acid, methacrylic acid or 4-vinylpyridine, and ethylene glycoldimethacrylate (cross-linker). The performance of these catalysts in the hydrogenation of cyclohexene, trans-methylcinnamate and 4-chloro-2-nitroanisole was compared with that of commercial Pd0/EnCat 30NP, produced by Reaxa. One of the catalysts (sulfonic resin as the support) behaved very well as far as activity, stability and selectivity are concerned. These results suggest that heterogeneous metal catalysts supported on polyaddition resins could be developed to become interesting materials for technical applications.  相似文献   

12.
The oxidation of the sulfhydryl group in cysteine to sulfenic acid, sulfinic acid, and sulfonic acid in proteins is important in a number of enzymatic processes. In this study we examined the fragmentation of four peptides containing cysteine, cysteine sulfinic acid (Cys-SO(2)H), and cysteine sulfonic acid (Cys-SO(3)H) in an ion-trap mass spectrometer. Our results show that the presence of a Cys-SO(2)H in a peptide leads to preferential cleavage of the amide bond at the C-terminal side of the oxidized cysteine residue. The results are important for the determination of the site of the cysteine oxidation and might be useful for the sequencing of cysteine-containing peptides.  相似文献   

13.
Molecularly imprinted polymers for the determination of triazines were synthesized by precipitation using atrazine as template, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker, and 2,2′‐azobisisobutrynitrile as initiator. The polymers were characterized by infrared spectroscopy and scanning electron microscopy and packed in a device for microextraction by packed sorbent aiming for the preconcentration/cleanup of herbicides, such as atrazine, simazine, simetryn, ametryn, and terbutryn in corn samples. Liquid chromatography coupled with time‐of‐flight mass spectrometry was used for the separation and determination of the herbicides. The selectivity coefficient of molecularly imprinted polymers was compared with that of nonimprinted polymer for the binary mixtures of atrazine/propanil and atrazine/picloram, and the values obtained were 15.6 and 2.96, respectively. The analytical curve ranged from 10 to 80 μg/kg (r = 0.989) and the limits of detection and quantification in the corn matrices were 3.3 and 10 μg/kg, respectively. Intra‐ and interday precisions were < 14.8% and accuracy was better than 90.9% for all herbicides. Polymer synthesis was successfully applied to the cleanup and preconcentration of triazines from fortified corn samples with 91.1–109.1% of recovery.  相似文献   

14.
The effect of several polyelectrolytes on the absorption spectrum of crystal violet (CV) has been studied over a wide range of pH. The following polymers were used: isotactic poly(methacrylic acid), PMAi; conventional poly(methacrylic acid), PMAc; a methacrylic acid (80%)-styrene (20%) copolymer, PMAS; and poly(styrene sulfonic acid), PSSA. Distinctly different effects were observed in the four cases. This has been interpreted in terms of a dependence of the degree and mode of binding of cationic dye molecules onto the polyacids on the hydrophobicity of the macroions.  相似文献   

15.
A series of liquid-crystalline polysiloxanes synthesized by cholest-5-en-3-ol (3beta)-10-undecenoate and 4'-octanoyloxy-biphenyl-4-yl 4-allyloxy-3-sulfo-benzoate were prepared in a one-step reaction with sulfonic acid group contents ranging between 0 and 2.73 wt %. All the polymers displayed smectic mesophases with a large temperature range for the mesophases. With an increase of sulfonic acid containing mesogens in the polymers, the temperature of the glass transition did not change greatly, while the temperature of the clear point decreased. The hydrogen-bonding mesogen aggregates in the domains disturb the liquid-crystalline molecular mobility and orientation, leading to a decrease in temperature from the mesophase to the isotropic transition. Unlike the polymers containing lower sulfonic acid mesogens, some polymers showed a dendritic texture of the SmB* phase, indicating that the sulfonic mesogens enhanced the rigid moieties of the supermolecular structure of the liquid-crystalline phases. All the polymers displayed sharp and strong peaks at low angles around 2theta approximately 2.6 degrees and broad peaks at wide angles around 2theta approximately 17 degrees in X-ray measurements. The intensity of the strong peak at low angles in the X-ray profiles decreased with an increase of sulfonic acid mesogens in the polymer systems.  相似文献   

16.
Catalytic materials bearing multiple sulfonic acid functional groups and positioned at varying distances from one another on the surface of mesoporous solids are prepared to explore the effects that the spatial arrangement of active sites have on catalytic activity and selectivity. A series of organosiloxane precursors containing either disulfide or sulfonate ester functionalities (synthons of the eventual sulfonic acid groups) are synthesized. From these molecular precursors, a variety of organic-inorganic hybrid, mesostructured SBA-15 silica materials are prepared using a postsynthetic grafting procedure that leads to disulfide and sulfonate ester modified silicas: [Si]CH(2)CH(2)CH(2)SS-pyridyl, 2.SBA, [Si]CH(2)CH(2)CH(2)SSCH(2)CH(2)CH(2)[Si], 3.SBA, [Si]CH(2)CH(2)(C(6)H(4))(SO(2))OCH(2)CH(3), 4.SBA, and [Si]CH(2)CH(2)(C(6)H(4))(SO(2))OC(6)H(4)O(SO(2))(C(6)H(4))CH(2)CH(2)[Si], 6.SBA ([Si] = (tbd1;SiO)(x)()(RO)(3)(-)(x)()Si, where x = 1, 2). By subsequent chemical derivatization of the grafted species, thiol and sulfonic acid modified silicas are obtained. The materials are characterized by a variety of spectroscopic ((13)C and (29)Si CP MAS NMR, X-ray diffraction) and quantitative (TGA/DTA, elemental analysis, acid capacity titration) techniques. In all cases, the organic fragment of the precursor molecule is grafted onto the solid without measurable decomposition, and the precursors are, in general, attached to the surface of the mesoporous oxide by multiple siloxane bridges. The disulfide species 2.SBA and 3.SBA are reduced to the corresponding thiols 7.SBA and 8.SBA, respectively, and 4.SBA and 6.SBA are transformed to the aryl sulfonic acids 11.SBA and 12.SBA, respectively. 7.SBA and 8.SBA differ only in terms of the level of control of the spatial arrangement of the thiol groups. Both 7.SBA and 8.SBA are further modified by oxidation with hydrogen peroxide to produce the alkyl sulfonic acid modified materials 9.SBA and 10.SBA, respectively. The performances of the sulfonic acid containing SBA-15 silica materials (with the exception of 12.SBA) are tested as catalysts for the condensation reaction of phenol and acetone to bisphenol A. The alkyl sulfonic acid modified material 10.SBA derived from the cleavage and oxidation of the dipropyl disulfide modified material 3.SBA is more active than not only its monosite analogue 9.SBA, but also the presumably stronger acid aryl sulfonic acid material 11.SBA. It appears that a cooperative effect between two proximal functional groups may be operating in this reaction.  相似文献   

17.
The reaction of benzimidazole and its 2-substituted derivatives with chlorosulfonic acid is examined. It is shown that only compounds containing electrophilic substituents in the 2-position yield sulfonic chlorides. Benzimidazole and its 2-methyl derivative give the sulfonic acids. Substitution occurs at the 5-position of the benzimidazole nucleus.Translated from Khimiya Geterotsiklicheskikh Soedinenii, Vol. 6, No. 5, pp. 681–683, May, 1970.  相似文献   

18.
Novel poly(arylene ether)s with sulfonic acid containing pendent groups were successfully synthesized by the nucleophilic displacement of aromatic dihalides with bisphenols in an aprotic solvent in the presence of excess potassium carbonate followed by sulfonation with chlorosulfonic acid. The sulfonation took place only at the controlled positions on the phenyl rings due to the novel bisphenol structures designed. The sulfonic acid group containing polymers were very soluble in common organic solvents, such as dimethyl sulfoxide, N,N′‐dimethylacetamide, and dimethylformamide, but swelled only slightly in water. These sulfonic acid group containing polymers were readily cast into tough and smooth films from organic solvents. The synthesized polymers had high glass‐transition temperatures of 171.0–240.7 °C and high molecular weights of 15,600–33,000 Da. These films could potentially be used as proton‐exchange membranes for fuel cells. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1779–1788, 2004  相似文献   

19.
Hydrophilized polyvinylidene fluoride microfiltration membranes were surface-modified in the presence of a template (terbumeton) in methanol with a graft copolymer of a functional monomer (2-acrylamido-2-methyl-1-propane sulfonic acid, AMPS, methacrylic acid, MAA, or acrylic acid, AA) and a cross-linker (N,N'-methylene-bis-acrylamide) using UV irradiation and benzophenone as photoinitiator. As result, membranes covered with a thin layer of imprinted polymer selective to terbumeton were obtained. Blank membranes were prepared with the same monomer composition, but in the absence of the template. The membranes' capacity to adsorb terbumetone from aqueous solution was evaluated yielding information regarding the effect of polymer synthesis (type and concentration of functional monomer, concentration of cross-linker) on the resulting membranes' recognition properties. UV spectroscopic studies of the interactions with terbumetone revealed that AMPS forms a stronger complex than MAA and AA. In agreement with that finding, imprinting with AMPS gave higher affinities than with MAA and AA. The terbumeton-imprinted membranes showed significantly higher sorption capability to this herbicide than to similar compounds (atrazine, desmetryn, metribuzine). With the novel surface modification technology, the low non-specific binding properties of the hydrophilized microfiltration membrane could successfully be combined with the receptor properties of molecular imprints, yielding substance-specific molecularly imprinted polymer composite membranes. The high affinity of these synthetic affinity membranes to triazine herbicides together with their straightforward and inexpensive preparation provides a good basis for the development of applications of imprinted polymers in separation processes such as solid-phase extraction.  相似文献   

20.
L-carnitine selective polymers were prepared by molecular imprinting using methacrylic acid as the functional monomer. The acid function of the monomer is expected to form hydrogen bond and ionic interactions with the amine function of the target molecule L-carnitine.The imprinted polymers were used as stationary phases in high-performance liquid chromatography (HPLC). It was shown that L-carnitine imprinted polymer exhibited a higher affinity to its template molecule,while the non-imprinted polymer had no affinity to the compounds tested. Racemic carnitine hydrochloride was efficiently resolved on the L-carnitine imprinted polymer, and the separation factor is 1.9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号