首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a facile synthesis of ultrathin (2.5 nm) trimetallic FePtPd alloy nanowires (NWs) with tunable compositions and controlled length (<100 nm). The NWs were made by thermal decomposition of Fe(CO)(5) and sequential reduction of Pt(acac)(2) (acac = acetylacetonate) and Pd(acac)(2) at temperatures from 160 to 240 °C. These FePtPd NWs showed composition-dependent catalytic activity and stability for methanol oxidation reaction. Among FePtPd and FePt NWs as well as Pd, Pt, and PtPd nanoparticles (NPs) studied in 0.2 M methanol and 0.1 M HClO(4) solution, the Fe(28)Pt(38)Pd(34) NWs showed the highest activity, with their mass current density reaching 488.7 mA/mg Pt and peak potential for methanol oxidation decreasing to 0.614 V from 0.665 V (Pt NP catalyst). The NW catalysts were also more stable than the NP catalysts, with the Fe(28)Pt(38)Pd(34) NWs retaining the highest mass current density (98.1 mA/mg Pt) after a 2 h current-time test at 0.4 V. These trimetallic NWs are a promising new class of catalyst for methanol oxidation reaction and for direct methanol fuel cell applications.  相似文献   

2.
Self-supported patterns of oriented alignment of beta-FeOOH nanowires are fabricated through a simple solution reaction from the complex [Fe(phen)(3)](2+) at 60 degrees C. The alignment of nanowires with a diameter of 40 nm and length of 6 mum is relatively uniform. HRTEM studies show that the growing direction of beta-FeOOH nanowires is perpendicular to the orientation plane of self-formed beta-FeOOH flake-like substrates. In the reaction and crystal growth process, the precursor [Fe(phen)(3)](2+) is undoubtedly vital to the formation of nanowire alignment. In detail, the formation of aligned nanowires is thought to be realized by controlling two competing reactions. Electrochemical and UV-visible measurements suggest that the product might have potential applications in lithium batteries and semiconductor electronics. This synthetic process is simple, mild, clean, reproducible, and free of any template; it provides a novel pathway for the low-temperature growth of nanowires and their simultaneous oriented alignment.  相似文献   

3.
We report the synthesis of single-crystalline nanowires (NWs) of metastable Fe5Si3 phase via an iodide vapor transport method. Free-standing Fe5Si3 NWs are grown on a sapphire substrate placed on a Si wafer without the use of any catalyst. The typical size of the Fe5Si3 nanowires is 5-15 microm in length and 100-300 nm in diameter. Synthesis of the metastable phase is induced by composition-dependent nucleation from the gas-phase reaction. Depending on the concentration ratio of FeI2(g) to SiI4(g), different phases of iron silicides are formed. The growth of nanowires is facilitated by the initial nucleation of silicide particles on the substrate and further self-seeded growth of the NWs. The present work not only provides a method for the synthesis of metastable Fe5Si3 nanowires but also suggests that the phase controlled synthesis can be further optimized to produce other metal-rich silicide nanostructures for future spintronic devices.  相似文献   

4.
We present a novel and facile synthesis methodology for obtaining graphitic carbon structures from Fe(II) and Co(II) gluconates. The formation of graphitic carbon can be carried out in only one step by means of heat treatment of these organic salts at a temperature of 900 degrees C or 1000 degrees C under inert atmosphere. This process consists of the following steps: (a) pyrolysis of the organic gluconate and its transformation to amorphous carbon, (b) conversion of Fe(2+) and Co(2+) ions to Fe(2)O(3) and CoO and their subsequent reduction to metallic nanoparticles by the carbon and (c) conversion of a fraction of formed amorphous carbon to graphitic structures by Fe and Co nanoparticles that act as catalysts in the graphitization process. The removal of the amorphous carbon and metallic nanoparticles by means of oxidative treatment (KMnO(4) in an acid solution) allows graphitic carbon nanostructures (GCNs) to be selectively recovered. The GCNs thus obtained (i.e. nanocapsules and nanopipes) have a high crystallinity as evidenced by TEM/SAED, XRD and Raman analysis. In addition, we used these GCNs as supports for platinum nanoparticles, which were well dispersed (mean Pt size approximately 2.5-3.2 nm). Most electrocatalysts prepared in this way have a high electrocatalytical surface area, up to 90 m(2) g(-1) Pt, and exhibit high catalytic activities toward methanol electrooxidation.  相似文献   

5.
The fabrication of ultrathin single-crystal Au nanowires with high aspect ratio and that are stable in air is challenging. Recently, a simple wet-chemical approach using oleylamine has been reported for the synthesis of Au nanowires with micrometer length and 2 nm in diameter. Despite efforts to understand the mechanism of the reaction, an ultimate question about the role of oxygen (O(2)) during the synthesis remained unclear. Here we report that the synthesis of ultrathin Au nanowires employing oleylamine is strongly affected by the amount of O(2) absorbed in the reaction solution. Saturating the solution with O(2) leads to both a high-yield production of nanowires and an increase in their length. Nanowires with diameters of about 2 nm and lengths of 8 μm, which corresponds to an aspect ratio of approximately 4000, were produced. The role of oxygen is attributed to the enhanced oxidation of twin defects on Au nanoparticles formed in the first stage of the reaction. Understanding the role of oxidative etching is crucial to significantly increasing the yield and the length of ultrathin Au nanowires.  相似文献   

6.
Although aqueous synthesis of nanocrystals is advantageous in terms of the cost, convenience, environmental friendliness, and surface cleanness of the product, nanocrystals of Pt and non‐noble metal alloys are difficult to obtain with controlled morphology and composition from this synthesis owing to a huge gap between the reduction potentials of respective metal salts. This huge gap could now be remedied by introducing a sulfite into the aqueous synthesis, which is believed to resemble an electroless plating mechanism, giving rise to a colloid of Pt‐M (M=Ni, Co, Fe) alloy nanowires with an ultrasmall thickness (ca. 2.6 nm) in a high yield. The sulfite also leads to the formation of surface M?S bonds and thus atomic‐level Pt/M–S(OH) interfaces for greatly boosted hydrogen evolution kinetics under alkaline conditions. An activity of 75.3 mA cm?2 has been achieved with 3 μg of Pt in 1 m KOH at an overpotential of 70 mV, which is superior to previously reported catalysts.  相似文献   

7.
Uniform and well-crystallized beta-Ga2O3 nanowires are prepared by reacting metal Ga with water vapor based on the vapor-liquid-solid (VLS) mechanism. Electron microscopy studies show that the nanowires have diameters ranging from 10 to 40 nm and lengths up to tens of micrometers. The contact properties of individual Ga2O3 nanowires with Pt or Au/Ti electrodes are studied, respectively, finding that Pt can form Schottky-barrier junctions and Au/Ti is advantageous to fabricate ohmic contacts with individual Ga2O3 nanowires. In ambient air, the conductivity of the Ga2O3 nanowires is about 1 (Omega.m)-1, while with adsorption of NH3 (or NO2) molecules, the conductivity can increase (or decrease) dramatically at room temperature. The as-grown Ga2O3 nanowires have the properties of an n-type semiconductor.  相似文献   

8.
We report a green synthesis of Cu(2)O nanowires and nanotubes in aqueous solution by reducing Cu(2+) to Cu(+) with glucose or fructose via Fehling's reaction. The screw dislocation-driven growth of Cu(2)O nanowires and nanotubes is confirmed by imaging the dislocation contrast, the Eshelby twist associated with dislocations and the spontaneously formed hollow nanotubes.  相似文献   

9.
Single-crystal iron silicon boron (Fe(5)Si(2)B) and iron boride (Fe(3)B) nanowires were synthesized by a chemical vapor deposition (CVD) method on either silicon dioxide (SiO(2)) on silicon (Si) or Si substrates without introducing any catalysts. FeI(2) and BI(3) were used as precursors. The typical size of the nanowires is about 5-50 nm in width and 1-20 mum in length. Different kinds of Fe-Si-B and Fe-B structures were synthesized by adjusting the ratio of FeI(2) vapor to BI(3) vapor. Single-crystal Fe(5)Si(2)B nanowires formed when the FeI(2) sublimator temperature was kept in the range of 540-570 degrees C. If the FeI(2) sublimator temperature was adjusted in the range of 430-470 degrees C, single-crystal Fe(3)B nanowires were produced. Fe(3)B nanowires grow from polycrystalline Fe(5)SiB(2) particles, while Fe(5)Si(2)B nanowires grow out of the Fe(5)Si(2)B layers, which are attached to triangle shaped FeSi particles. Both the ratio of FeI(2) vapor to BI(3) vapor and the formation of the particles (Fe(5)SiB(2) particles for the growth of Fe(3)B nanowires, FeSi particles for the growth of Fe(5)Si(2)B nanowires) are critical for the growth of Fe(3)B and Fe(5)Si(2)B nanowires. The correct FeI(2) vapor to BI(3) vapor ratio assures the desired phase form, while the particles provide preferential sites for adsorption and nucleation of Fe(3)B or Fe(5)Si(2)B molecules. Fe(3)B or Fe(5)Si(2)B nanowires grow due to the preferred growth direction of <110>.  相似文献   

10.
Hydroxyl radicals were generated in the Fenton reaction at pH 4 (Fe(2+) + H(2)O(2) --> Fe(3+) + .OH + OH-, k approximately equal to 60 L mol(-1) s(-1)) and by pulse radiolysis (for the determination of kinetic data). They react rapidly with 1,3-dimethyluracil, 1,3-DMU (k = 6 x 10(9) L mol(-1) s(-1)). With H(2)O(2) in excess and in the absence of O(2), 1,3-DMU consumption is 3.3 mol per mol Fe(2+). 1,3-DMUglycol is the major product (2.95 mol per mol Fe(2+)). Dimers, prominent products of .OH-induced reactions in the absence of Fe(2+)/Fe(3+) (Al-Sheikhly, M.; von Sonntag, C. Z. Naturforsch. 1983, 31b, 1622) are not formed. Addition of .OH to the C(5)-C(6) double bond of 1,3-DMU yields reducing C(6)-yl 1 and oxidizing C(5)-yl radicals 2 in a 4:1 ratio. The yield of reducing radicals was determined with tetranitromethane by following the buildup of nitroform anion. Reaction of 1 with Fe(3+) that builds up during the reaction or with H(2)O(2) gives rise to a short-chain reaction that is terminated by the reaction of Fe(2+) with 2, which re-forms 1,3-DMU. In the presence of O(2), 1.1 mol of 1,3-DMU and 0.6 mol of O(2) are consumed per mol Fe(2+) while 0.16 mol of 1,3-DMU-glycol and 0.17 mol of organic hydroperoxides (besides further unidentified products) are formed. In the presence of O(2), 1 and 2 are rapidly converted into the corresponding peroxyl radicals (k = 9.1 x 10(8) L mol(-1) s(-1)). Their bimolecular decay (2k = 1.1 x 10(9) L mol(-1) s(-1)) yields approximately 22% HO(2)./O(2).(-) in the course of fragmentation reactions involving the C(5)-C(6) bond. Reduction of Fe(3+) by O(2).(-) leads to an increase in .OH production that is partially offset by a consumption of Fe(2+) in its reaction with the peroxyl radicals (formation of organic hydroperoxides, k approximately 3 x 10(5) L mol(-1) s(-1); value derived by computer simulation).  相似文献   

11.
Nanocrystalline Ce(1)(-)(x)Ti(x)O(2) (0 < or = x < or = 0.4) and Ce(1-)(x)(-)(y)Ti(x)Pt(y)O(2)(-)(delta) (x = 0.15, y = 0.01, 0.02) solid solutions crystallizing in fluorite structure have been prepared by a single step solution combustion method. Temperature programmed reduction and XPS study of Ce(1)(-)(x)Ti(x)O(2) (x = 0.0-04) show complete reduction of Ti(4+) to Ti(3+) and reduction of approximately 20% Ce(4+) to Ce(3+) state compared to 8% Ce(4+) to Ce(3+) in the case of pure CeO(2) below 675 degrees C. The substitution of Ti ions in CeO(2) enhances the reducibility of CeO(2). Ce(0.84)Ti(0.15)Pt(0.01)O(2)(-)(delta) crystallizes in fluorite structure and Pt is ionically substituted with 2+ and 4+ oxidation states. The H/Pt atomic ratio at 30 degrees C over Ce(0.84)Ti(0.15)Pt(0.01)O(2)(-)(delta) is 5 and that over Ce(0.99)Pt(0.01)O(2)(-)(delta) is 4 against just 0.078 for 8 nm Pt metal particles. Carbon monoxide and hydrocarbon oxidation activity are much higher over Ce(1-)(x)(-)(y)Ti(x)Pt(y)O(2) (x = 0.15, y = 0.01, 0.02) compared to Ce(1)(-)(x)Pt(x)O(2) (x = 0.01, 0.02). Synergistic involvement of Pt(2+)/Pt degrees and Ti(4+)/Ti(3+) redox couples in addition to Ce(4+)/Ce(3+) due to the overlap of Pt(5d), Ti(3d), and Ce(4f) bands near E(F) is shown to be responsible for improved redox property and higher catalytic activity.  相似文献   

12.
One-pot synthesis of FePt nanoparticles larger than 5 nm with controlled composition has been developed by the polyol reduction of platinum acetylacetonate and iron acetylacetonate in excess ligands. The obtained large FePt nanoparticles (6.1 +/- 0.6 nm Fe36Pt64, 5.8 +/- 0.7 nm Fe44Pt56, and 5.1 +/- 0.7 nm Fe49Pt51 nanoparticles) were thermally more stable than the small ones and were hard to coalesce in the in-plane direction for their 2D superlattice.  相似文献   

13.
14.
采用X 射线衍射和扫描电子显微镜技术, 考察了溶胶-凝胶法制备氮化硅纳米线过程中反应条件(添加剂种类和含量、反应时间以及反应温度)对碳热还原产物组成和形貌的影响. 结果表明, 碳化后铁含量为5%(w)的凝胶, 在1300 ℃下反应10 h, Si3N4纳米线产率较高. 添加剂的种类和含量不同, 所得产物的组成和形貌也不相同.随着反应温度的升高或反应时间的延长,产物经历了一个从SiOx到Si2N2O 再到Si3N4的转变过程. 在有金属组分存在时, Si3N4纳米线由气-液-固过程形成.  相似文献   

15.
We have reported a facile and general method for the rapid synthesis of hollow nanostructures with urchinlike morphology. In-situ produced Ag nanoparticles can be used as sacrificial templates to rapidly synthesize diverse hollow urchinlike metallic or bimetallic (such as Au/Pt) nanostructures. It has been found that heating the solution at 100 degrees C during the galvanic replacement is very necessary for obtaining urchinlike nanostructures. Through changing the molar ratios of Ag to Pt, the wall thickness of hollow nanospheres can be easily controlled; through changing the diameter of Ag nanoparticles, the size of cavity of hollow nanospheres can be facilely controlled; through changing the morphologies of Ag nanostructures from nanoparticle to nanowire, hollow Pt nanotubes can be easily designed. This one-pot approach can be extended to synthesize other hollow nanospheres such as Pd, Pd/Pt, Au/Pd, and Au/Pt. The features of this technique are that it is facile, quick, economical, and versatile. Most importantly, the hollow bimetallic nanospheres (Au/Pt and Pd/Pt) obtained here exhibit an area of greater electrochemical activity than other Pt hollow or solid nanospheres. In addition, the approximately 6 nm hollow urchinlike Pt nanospheres can achieve a potential of up to 0.57 V for oxygen reduction, which is about 200 mV more positive than that obtained by using a approximately 6 nm Pt nanoparticle modified glassy carbon (GC) electrode. Rotating ring-disk electrode (RRDE) voltammetry demonstrates that approximately 6 nm hollow Pt nanospheres can catalyze an almost four-electron reduction of O(2) to H(2)O in air-saturated H(2)SO(4) (0.5 M). Finally, compared to the approximately 6 nm Pt nanoparticle catalyst, the approximately 6 nm hollow urchinlike Pt nanosphere catalyst exhibits a superior electrocatalytic activity toward the methanol oxidation reaction at the same Pt loadings.  相似文献   

16.
We report the synthesis of platinum telluride nanoparticles (Pt(3)Te(4) NPs) in the solution phase at room temperature using a template-assisted method. The dendrimeric aggregates formed are composed of several small units of Pt(3)Te(4) NPs of ~4 nm diameter. Tellurium nanowires (Te NWs) are used as the template and the reducing agent in the growth of NPs which occurs due to the galvanic replacement reaction between Te NWs and PtCl(6)(2-). Surface-enhanced Raman scattering (SERS) of the dispersed Pt(3)Te(4) NPs was studied using crystal violet (CV) as the analyte. SERS sensitivity up to 10(-8) M of CV was observed. The Raman enhancement factor (EF) of adsorbed CV on NP aggregates was calculated to be 1.74 × 10(5). The catalytic ability of the as-synthesized Pt(3)Te(4) NPs for the reduction of 4-nitrophenol (4-NP) was studied.  相似文献   

17.
A newly designed probe, 6-thiophen-2-yl-5,6-dihydrobenzo[4,5]imidazo-[1,2-c] quinazoline (HL(1)) behaves as a highly selective ratiometric fluorescent sensor for Fe(2+) at pH 4.0-5.0 and Fe(3+) at pH 6.5-8.0 in acetonitrile-HEPES buffer (1/4) (v/v) medium. A decrease in fluorescence at 412 nm and increase in fluorescence at 472 nm with an isoemissive point at 436 nm with the addition of Fe(2+) salt solution is due to the formation of mononuclear Fe(2+) complex [Fe(II)(HL)(ClO(4))(2)(CH(3)CN)(2)] (1) in acetonitrile-HEPES buffer (100 mM, 1/4, v/v) at pH 4.5 and a decrease in fluorescence at 412 nm and increase in fluorescence at 482 nm with an isoemissive point at 445 nm during titration by Fe(3+) salt due to the formation of binary Fe(3+) complex, [Fe(III)(L)(2)(ClO(4))(H(2)O)] (2) with co-solvent at biological pH 7.4 have been established. Binding constants (K(a)) in the solution state were calculated to be 3.88 × 10(5) M(-1) for Fe(2+) and 0.21 × 10(3) M(-1/2) for Fe(3+) and ratiometric detection limits for Fe(2+) and Fe(3+) were found to be 2.0 μM and 3.5 μM, respectively. The probe is a "naked eye" chemosensor for two states of iron. Theoretical calculations were studied to establish the configurations of probe-iron complexes. The sensor is efficient for detecting Fe(3+)in vitro by developing a good image of the biological organelles.  相似文献   

18.
The synthesis of marokite CaMn(2)O(4) nanowires using a hydrothermal method is reported. Transmission electron microscopy and electron diffraction measurements show that the nanowires are polycrystalline in nature with diameters between 10 and 20 nm and lengths ranging from approximately 100 to 500 nm. Most interestingly, in contrast with the bulk material, magnetization measurements show that these nanowires exhibit ferromagnetic ordering with a Curie temperature (T(C)) of approximately 40 K.  相似文献   

19.
通过高温固相反应合成了铌酸盐KCa2Nb3O10及Cr3+和Mo6+掺杂(摩尔分数5%)的KCa2Nb3O10,并通过离子交换反应制备出HCa2Nb3O10及Cr3+和Mo6+掺杂的HCa2Nb3O10,采用X射线衍射、原子吸收光谱、扫描电镜等对所制得的样品进行了表征.在甲醇为电子给体、Pt为助催化剂的情况下,研究了催化剂HCa2Nb3O10及Cr3+和Mo6+掺杂的HCa2Nb3O10在紫外光辐射下分解水产氢的光催化活性,并讨论了引起催化剂活性差异的原因.  相似文献   

20.
Recent studies have further demonstrated that the conjugation of noble metal helical nanostructures could alter their optical and catalytic activities. However, the intrinsic isotropic crystal growth of Pt makes the synthesis of high-quality Pt NCs with unique porous or branched nanostructures difficult. In this work, a new, powerful capping agent, N,N-dimethyloctadecylammonium bromide acetate sodium, was synthesized and used to coordinate Pt ions, slowing down the reaction rate. As a result, in aqueous solution, Pt nanohelices with highly ordered horizontal pore channels were successfully fabricated. Importantly, the Pt nanohelices were composed of several sub-2 nm Pt nanowires coiled together around a central point. The as-obtained samples exhibited enhanced photothermal properties compared with the classic Pt nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号