共查询到15条相似文献,搜索用时 15 毫秒
1.
2.
一、前言 叶轮机械三元流动通用理论提出的使用两类流面迭代求解叶轮机械三元流动正反问题的方法,已成为内流数值计算的一个基本方法。随着计算机速度的提高、内存的扩大,越来越多的三元直接解投入了使用。但是两类流面迭代求解仍然是叶轮机械内流计算的一个重要方法。 相似文献
3.
4.
本文是文献[1]的继续.在任意非正交曲线坐标表示的粘性气体基本方程和量级分析的基础上,得到了考虑流层厚度变化的任意迥转面叶栅可压附面层流动微分方程组.采用了压缩性的坐标变换后,推导得到了五个一阶导数的微分方程组.在外层紊流模型的计算中引入了压力梯度对无量纲常数K的影响,使计算精度有所提高.用本文的计算方法编制了TDBLC(绝热壁面)和HTBLC(已知壁面温度)两个计算机程序.本文的方法可用来计算任意迥转面叶栅可压流体层流和紊流的附面层流动. 相似文献
5.
离心压气机转子内部流场S_1/S_2全三元迭代解 总被引:1,自引:0,他引:1
为了比较准三元解和全三元解的差异,验证准三元解在计算离心压气机转子内部流场的准确程度,研究离心压气机转子内部流场全三元流动特性,本文对一有激光测量结果的高压比离心压气机[1]叶轮内部流场进行了全三元迭代计算,分析了S1/S2两类流面在叶轮通道内分布形态,比较了两类流面准三元解与全三元解的计算结果,讨论了无粘二次流的分布。并进一步和激光测量值及N-S三元直接解进行了详细的比较。 相似文献
6.
本文使用张量工具,导出非正交曲线坐标下弱守恒型基本方程组与特征理论,较全面地讨论了这类问题的边界条件;改进了MacCormack差分格式;计算了压气机叶栅,计算结果与实验结果比较还是较一致的。 相似文献
7.
基于叶轮机械两类流面迭代计算理论,在非正交曲线坐标上建立了S_2流面上弱守恒型流函数方程.使用人工密度修正方法求解S_2流面跨音流动正问题,用速度积分方法避免了密度双值问题,并编制了相应的计算机程序. 相似文献
8.
9.
在非正交曲线坐标系上采用守恒型流函数方程,用人工可压缩性方法解任意(辶回)转面上叶栅跨音流动,考虑了通过激波间断的熵增。用速度梯度方程积分的方法解决了密度双值问题。并试验比较了几种数值计算方法。 相似文献
10.
11.
使用非正交曲线座标与速度分量S_1流面正问题流场矩阵解 总被引:1,自引:0,他引:1
本文基于吴仲华提出的使用非正交曲线座标与相应的非正交速度分量的叶轮机械三元流动气动热力学基本方程组,引入流函数,得出求解的主要方程:流函数的二阶拟线性偏微分方程.除了与密度有关的项以外,流函数的各阶导数都置在方程的左端.这样加快了收敛的速度.用中心九点差分格式,将微分方程离散化后,所得的线性代数方程组用矩阵[L][u]分解直接求解.这种解法收敛速度较快.系数矩阵为对角线带状稀疏矩阵.采用了:(1)非零元素按对角线编号;(2)增设虚点两项办法.大量减少了计算机内存量.由流函数求密度时采用了内存密度函数表插值方法.简单地讨论了松弛因子的选取.用此程序对一些压气机和透平的叶型进行了计算,同实验结果及理论解析解进行了比较,相互是一致的. 相似文献
12.
本文推导建立了适于求解跨声速轴流式压气机转子中S_2流面正问题的全守恒型势函数方程,方程的求解采用人工密度的方法和一种新的Φ-ρ(Γ)迭代方法,能在S_2流面上自动捕获激波.用本方法编制的计算机程序对西德DFVLR单级跨声速轴流式压气机转子的一个最高效率点实验工况进行了验算,并将计算结果与实验结果作了比较。 相似文献
13.
使用非正交曲线座标与速度分量S_2流面反问题流场线松弛解 总被引:4,自引:0,他引:4
针对叶轮机械S_2流面反问题的计算,介绍了使用任意非正交曲线座标和非正交速度分量的S_2流面反问题流场线松弛解法计算机程序.并对该程序与目前一般常用的速度推广法(流线曲率法)程序和矩阵直接解法程序的不同之处,作了简要的比较和评论.指出流场线松弛法的优点,特别是在采用叶片三维设计计算方法时,当叶片区沿流线方向必须设立更多的计算站时,流场线松弛方法是一个值得推荐的好方法. 相似文献
14.
本文包括了两个部分内容(1)根据给定的几根流线上的离散点拟合一个光滑的、任意翘曲的S_1流面,并在此曲面上进行计算网格加密.(2)在此任意翘曲的S_1流面上进行亚声速叶栅绕流计算,并给出了计算实例.本文将用此方法拟合的曲面同解析解进行了比较,其误差为0.004%,可见是相当满意的,而且拟合并不复杂,适合于工程上使用.此曲面拟合的方法也适用于其它工程计算。 相似文献
15.
本文运用文献[1—3]提出的叶轮机械三元流动的理论、方程和座标系分析了S_1流面跨声流场,并发展了一种快速隐式算法.在这一算法中,将外流计算中最近发展成熟的近似分解因式方法,在对其人工密度的处理进行了某些修正之后,首次引入到叶轮机械内部跨声流场的数值计算中。对一些叶栅计算的结果表明:本方法收敛迅速、稳定,计算结果与实验结果基本一致。 相似文献