首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
aFGF拮抗剂对3T3细胞蛋白质组影响的研究   总被引:1,自引:0,他引:1  
六肽P2(VYMSPF)是我室从噬菌体展示肽库中筛选出来的aFGF拮抗剂,为研究其对aFGF信号传导机制的影响,对处于4种不同生理条件下的NIH3T3细胞(正常的细胞、加P2刺激的细胞、加aFGF+肝素刺激的细胞、加aFGF+肝素+P2刺激的细胞)的全细胞裂解液进行双向电泳分离及软件分析.对后2种细胞的蛋白质图谱中表达差异的5个蛋白质点进行质谱分析和数据库检索.鉴定出3种表达下调的蛋白质,其中鸟苷酸结合蛋白α-11亚单位和1C-型核因子分别参与细胞内aFGF信号传导以及转录调控.这些差异点的变化为进一步研究P2对aFGF信号传导途径的抑制作用提供了实验基础和线索  相似文献   

2.
Fibroblast growth factor(FGF) signal transduction pathway is correlated with many diseases,such as cancer,skeletal dysplasias,olfactory syndromes and so on.P(VYMSPF),a small peptide,is an antagonist of aFGF.In order to investigate the impact of the peptide P on aFGF signal transduction pathway,the proteomes of NIH3T3 cell stimulated under different conditions(aFGF+heparin sodium and aFGF+heparin sodium+P) were extracted and analyzed by 2DE,five differentially expressed protein spots were selected and identified via ESI-MS/MS.The result indicates that the peptide P has a great influence on the function of aFGF such as metabolism,protein translation and cytoskeleton formation;the target signal pathway of the peptide P may be MAPK pathway and the peptide P might also affect the PLCγ pathway.The article provides a new insight into the peptide P as a potential anticancer drug.  相似文献   

3.
The preparation and characterization of heparin-immobilized microspheres which were used to bind acidic fibroblast growth factor (aFGF), vascular endothelial growth factor (VEGF), monocyte chemoattractant protein 1 (MCP-1/CCL2), and regulation upon activation normal T cell express sequence (RANTES/CCL5) is described. These beads were used as trapping agents in microdialysis sampling experiments in a separate study. Both free heparin and a synthesized heparin–albumin conjugate were immobilized onto microspheres and compared for their effectiveness. The heparin–albumin conjugate microspheres exhibited significant nonspecific adsorption which appeared to be due to the albumin content. The prepared heparin-immobilized microspheres were stable for 3 months at 4 °C. A bead-based flow cytometric assay was developed to study the binding capacity and specificity of the heparin-immobilized microspheres to cytokines. These heparin-immobilized microspheres exhibited broad dynamic ranges for binding to the four cytokines (aFGF, 1.0–1,000 ng/mL; VEGF, 0.5–1,000 ng/mL; CCL2, 1.95–1,000 ng/mL; CCL5, 1.95–500 ng/mL). Fast binding kinetics of the cytokines to the heparin-immobilized beads suggests that these beads may be useful as affinity agents in microfluidic flow systems.  相似文献   

4.
The heparin-binding growth factors aFGF and bFGF (acidic and basic fibroblast growth factor) from crude bovine brain extract were co-eluted with purified [125I]aFGF and/or [125I]bFGF as tracers from heparin-Sepharose and from several insoluble substituted polystyrenes used as stationary phases in low-pressure affinity chromatography. The ability of the resins to isolate FGFs was determined by measuring the eluted radioactivity. It was demonstrated that the various substituted polystyrene resins retain [125I]aFGF and [125I]bFGF with different specificities according to the chemical nature of the substituted groups bound to the polystyrene support. Bifunctional resins substituted with sulphonate and phenylalanine sulphamide groups adsorbed both [125I]aFGF and [125I]bFGF whereas bifunctional resins substituted with sulphonate and sulphamide serine adsorbed only [125I]bFGF. These stationary phases could be adapted to high-performance affinity chromatography and used to isolate growth factors of the FGF family.  相似文献   

5.
A novel molecular tool for double-stranded (ds) DNA detection using synthetic peptide is described. The peptide was designed based on the DNA binding domain of the lambda phage CRO repressor (CRO). The designed peptides contain helix-turn-helix (HTH), which is DNA binding motif. A cyclic peptide and a mutant peptide based on CRO were also designed, and the resulting affinity for dsDNA was increased. Furthermore, native amino acids of the peptide were replaced with arginine to increase the affinity for dsDNA. The affinity of these peptides for DNA binding was assessed by surface plasmon resonance (SPR) technique.  相似文献   

6.
7.
The clinical success of PD-1/PD-L1 immune checkpoint targeting antibodies in cancer is followed by efforts to develop small molecule inhibitors with better penetration into solid tumors and more favorable pharmacokinetics. Here we report the crystal structure of a macrocyclic peptide inhibitor (peptide 104) in complex with PD-L1. Our structure shows no indication of an unusual bifurcated binding mode demonstrated earlier for another peptide of the same family (peptide 101). The binding mode relies on extensive hydrophobic interactions at the center of the binding surface and an electrostatic patch at the side. An interesting sulfur/π interaction supports the macrocycle-receptor binding. Overall, our results allow a better understanding of forces guiding macrocycle affinity for PD-L1, providing a rationale for future structure-based inhibitor design and rational optimization.  相似文献   

8.
There is a real need for simple structures that define a β‐strand conformation, a secondary structure that is central to peptide–protein interactions. For example, protease substrates and inhibitors almost universally adopt this geometry on active site binding. A planar pyrrole is used to replace two amino acids of a peptide backbone to generate a simple macrocycle that retains the required geometry for active site binding. The resulting β‐strand templates have reduced peptide character and provide potent protease inhibitors with the attachment of an appropriate amino aldehyde to the C‐terminus. Picomolar inhibitors of cathepsin L and S are reported and the mode of binding of one example to the model protease chymotrypsin is defined by X‐ray crystallography.  相似文献   

9.
Computational prediction of the effects of residue changes on peptide-protein binding affinities, followed by experimental testing of the top predicted binders, is an efficient strategy for the rational structure-based design of peptide inhibitors. In this study we apply this approach to the discovery of competitive antagonists for the secretin receptor, the prototypical member of class B G protein-coupled receptors (GPCRs). Proteins in this family are involved in peptide hormone-stimulated signaling and are implicated in several human diseases, making them potential therapeutic targets. We first validated our computational method by predicting changes in the binding affinities of several peptides to their cognate class B GPCRs due to alanine replacement and compared the results with previously published experimental values. Overall, the results showed a significant correlation between the predicted and experimental ΔΔG values. Next, we identified candidate inhibitors by applying this method to a homology model of the secretin receptor bound to an N-terminal truncated secretin peptide. Predictions were made for single residue replacements to each of the other nineteen naturally occurring amino acids at peptide residues within the segment binding the receptor N-terminal domain. Amino acid replacements predicted to most enhance receptor binding were then experimentally tested by competition-binding assays. We found two residue changes that improved binding affinities by almost one log unit. Furthermore, a peptide combining both of these favorable modifications resulted in an almost two log unit improvement in binding affinity, demonstrating the approximately additive effect of these changes on binding. In order to further investigate possible physical effects of these residue changes on receptor binding affinity, molecular dynamics simulations were performed on representatives of the successful peptide analogues (namely A17I, G25R, and A17I/G25R) in bound and unbound forms. These simulations suggested that a combination of the α-helical propensity of the unbound peptide and specific interactions between the peptide and the receptor extracellular domain contribute to their higher binding affinities.  相似文献   

10.
The adsorption kinetics of an engineered gold binding peptide on gold surface was studied by using both quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy systems. The gold binding peptide was originally selected as a 14-amino acid sequence by cell surface display and then engineered to have a 3-repeat form (3R-GBP1) with improved binding characteristics. Both sets of adsorption data for 3R-GBP1 were fit to Langmuir models to extract kinetics and thermodynamics parameters. In SPR, the adsorption onto the surface shows a biexponential behavior and this is explained as the effect of bimodal surface topology of the polycrystalline gold substrate on 3R-GBP1 binding. Depending on the concentration of the peptide, a preferential adsorption on the surface takes place with different energy levels. The kinetic parameters (e.g., K(eq) approximately 10(7) M(-1)) and the binding energy (approximately -8.0 kcal/mol) are comparable to synthetic-based self-assembled monolayers. The results demonstrate the potential utilization of genetically engineered inorganic surface-specific peptides as molecular substrates due to their binding specificity, stability, and functionality in an aqueous-based environment.  相似文献   

11.
The structure of peptide p6.7, a mimotope of the nicotinic receptor ligand site that binds alpha-bungarotoxin and neutralizes its toxicity, was compared to that of the acetylcholine binding protein. The central loop of p6.7, when complexed with alpha-bungarotoxin, fits the structure of the acetylcholine binding protein (AChBP) ligand site, whereas peptide terminal residues seem to be less involved in toxin binding. The minimal binding sequence of p6.7 was confirmed experimentally by synthesis of progressively deleted peptides. Affinity maturation was then achieved by random addition of residues flanking the minimal binding sequence and by selection of new alpha-bungarotoxin binding peptides on the basis of their dissociation kinetic rate. The tetra-branched forms of the resulting high-affinity peptides were effective as antidotes in vivo at a significantly lower dose than the tetra-branched lead peptide.  相似文献   

12.
Protein–peptide interactions are essential for all cellular processes including DNA repair, replication, gene‐expression, and metabolism. As most protein – peptide interactions are uncharacterized, it is cost effective to investigate them computationally as the first step. All existing approaches for predicting protein – peptide binding sites, however, are based on protein structures despite the fact that the structures for most proteins are not yet solved. This article proposes the first machine‐learning method called SPRINT to make Sequence‐based prediction of Protein – peptide Residue‐level Interactions. SPRINT yields a robust and consistent performance for 10‐fold cross validations and independent test. The most important feature is evolution‐generated sequence profiles. For the test set (1056 binding and non‐binding residues), it yields a Matthews’ Correlation Coefficient of 0.326 with a sensitivity of 64% and a specificity of 68%. This sequence‐based technique shows comparable or more accurate than structure‐based methods for peptide‐binding site prediction. SPRINT is available as an online server at: http://sparks-lab.org/ . © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Promotion of cell adhesion on biomaterials is crucial for the long‐term success of a titanium implant. Herein a novel concept is highlighted combining very stable and affine titanium surface adhesive properties with specific cell binding moieties in one molecule. A peptide containing l ‐3,4‐dihydroxyphenylalanine was synthesized and affinity to titanium was investigated. Modification with a cyclic RGD peptide and a heparin binding peptide (HBP) was realized by an efficient on‐resin combination of Diels–Alder reaction with inverse electron demand and CuI catalyzed azide–alkyne cycloaddition. The peptide was fluorescently labeled by thiol Michael addition. Conjugating the cyclic RGD and HBP in one peptide gave improved spreading, proliferation, viability, and the formation of well‐developed actin cytoskeleton and focal contacts of osteoblast‐like cells.  相似文献   

14.
We estimate the binding free energy between peptides and an MHC class II molecule using molecular dynamics (MD) simulations with the weighted histogram analysis method (WHAM). We show that, owing to its more thorough sampling in the available computational time, the binding free energy obtained by pulling the whole peptide using a coarse‐grained (CG) force field (MARTINI) is less prone to significant error induced by inadequate‐sampling than using an atomistic force field (AMBER). We further demonstrate that using CG MD to pull 3–4 residue peptide segments while leaving the remaining peptide segments in the binding groove and adding up the binding free energies of all peptide segments gives robust binding free energy estimations, which are in good agreement with the experimentally measured binding affinities for the peptide sequences studied. Our approach thus provides a promising and computationally efficient way to rapidly and reliably estimate the binding free energy between an arbitrary peptide and an MHC class II molecule. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
A designing peptide as agent for inducing diabetes mellitus type 2 (T2DM) in an animal model is challenging. The computational approach provides a sophisticated tool to design a functional peptide that may block the insulin receptor activity. The peptide that able to inhibit the binding between insulin and insulin receptor is a warrant for inducing T2DM. Therefore, we designed a potential peptide inhibitor of insulin receptor as an agent to generate T2DM animal model by bioinformatics approach. The peptide has been developed based on the structure of insulin receptor binding site of insulin and then modified it to obtain the best properties of half life, hydrophobicity, antigenicity, and stability binding into insulin receptor. The results showed that the modified peptide has characteristics 100 h half-life, high-affinity −95.1 ± 20, and high stability 28.17 in complex with the insulin receptor. Moreover, the modified peptide has molecular weight 4420.8 g/Mol and has no antigenic regions. Based on the molecular dynamic simulation, the complex of modified peptide-insulin receptor is more stable than the commercial insulin receptor blocker. This study suggested that the modified peptide has the promising performance to block the insulin receptor activity that potentially induce diabetes mellitus type 2 in mice.  相似文献   

16.
Biologists have observed that the presence of divalent metal is essential for the binding of the hormone oxytocin (OT) to its cellular receptor. However, this interaction is not understood on the molecular level. Because conformation is a key factor controlling ligand binding in biomolecule systems, we have used ion mobility experiments and molecular modeling to probe the conformation of the oxytocin-zinc complex. Results show that Zn2+ occupies an octahedral site in the interior of the OT peptide that frees the N-terminus and creates a structured hydrophobic binding site on the peptide exterior; both factors are conducive to binding oxytocin to its receptor.  相似文献   

17.
Phosphorylation is one of the key events in signal transduction and zinc plays an important catalytic and/or structural role in many biological systems. The binding of Zn to a phosphopeptide will alter the physiological functions of a peptide. The binding of casein phosphopeptides (CPPs) to Zn has been analyzed using nanospray mass spectrometry. Electrospray ionization (ESI) spectra of peptides produced by tryptic digestion of alpha-casein incubated with Zn show both free and Zn-bound phosphopeptides. The interaction of CPPs and the corresponding dephosphorylated peptides with zinc is compared. This study demonstrates that the phosphorylation state of a peptide dramatically affects Zn binding, with the decrease in Zn-bound forms of peptide paralleling the decrease in phosphorylation as casein is chemically dephosphorylated, although, in some cases, a small amount of residual Zn-binding capacity remains in the completely dephosphorylated peptide. The observed fragmentation patterns of the Zn-bound CPPs support the thesis that nonphosphorylated residues are involved in the metal binding.  相似文献   

18.
Techniques that can effectively separate protein–peptide complexes from free peptides have shown great value in major histocompatibility complex (MHC)–peptide binding studies. However, most of the available techniques are limited to measuring the binding of a single peptide to an MHC molecule. As antigen presentation in vivo involves both endogenous ligands and exogenous antigens, the deconvolution of multiple binding events necessitates the implementation of a more powerful technique. Here we show that capillary electrophoresis coupled to fluorescence detection (CE–FL) can resolve multiple MHC–peptide binding events owing to its superior resolution and the ability to simultaneously monitor multiple emission channels. We utilized CE–FL to investigate competition and displacement of endogenous peptides by an immunogenic gluten peptide for binding to HLA-DQ2. Remarkably, this immunogenic peptide could displace CLIP peptides from the DQ2 binding site at neutral but not acidic pH. This unusual ability of the gluten peptide supports a direct loading mechanism of antigen presentation in extracellular environment, a property that could explain the antigenicity of dietary gluten in celiac disease.  相似文献   

19.
Polymer surface-peptide binding interactions have been shown previously to lead to reductions in peptide matrix assisted laser desorption/ionization (MALDI) ion signals. In previous studies, increases in surface-peptide binding were characterized by the increases in both the initially adsorbed and retained quantities of 125I-radiolabeled peptides. The present studies establish a specific correlation between the peptide retention properties of the polymer surface and the reduction in the peptide MALDI ion signal. This correlation is demonstrated by obtaining MALDI mass spectra of angiotensin I applied to various polymer surfaces having a range of peptide adsorption and retention properties. In addition, the use of a MALDI based method of standard additions is shown to allow the quantitation of the polymer surface-peptide retention affinity for angiotensin I and porcine insulin. The MALDI standard additions method for measurement of surface-peptide retention affinities offers a number of significant advantages over conventional radiolabeled peptide binding methods and promises to be a valuable tool for the determination of this important biomaterial characteristic.  相似文献   

20.
The hydrophobic interaction between antimicrobial peptides and membrane hydrophobic cores is usually related to their cytotoxicity. In this study, the adsorption mechanism of five plasma membrane-associated peptides, indolicidin (IL) and its four derivatives, with hydrophobic ligands was investigated to understand the relationship between peptide hydrophobicity and bioactivity. The hydrophobic adsorption mechanisms of IL and its derivatives were interpreted thermodynamically and kinetically by reversed-phase chromatography (RPC) analysis and surface plasmon resonance (SPR) measurement, respectively. IL and its derivatives possess a similar random coil structure in both aqueous and organic solvents. Thermodynamic analysis showed that the binding enthalpy of peptides with higher electropositivity was lower than those with lower electropositivity and exhibited unfavorable binding entropy. Higher electropositivity peptides adsorbed to the hydrophobic surface arising from the less bound solvent on the peptide surface. A comparison with the kinetic analysis showed that IL and its derivatives adopt a two-state binding model (i.e., adsorption onto and self-association on the hydrophobic acyl chain) to associate with the hydrophobic surface, and the binding affinity of peptide self-association correlates well with peptide hemolysis. Consequently, this study provided a novel concept for understanding the action of plasma membrane-associated peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号