首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
New blue- to yellow-emitting materials have been developed by incorporating fluorene-based chromophores on pyrene core with acetylene linkage and using multifold palladium-catalyzed cross-coupling reactions. Both mono- and tetrasubstituted derivatives have been synthesized and characterized. The tetrasubstituted derivatives displayed red-shifted emission when compared to the monosubstituted derivative indicative of an extended conjugation in the former. End-capping with a diphenylamine unit further red-shifted the absorption and emission profiles and imparted a weak dipolar character to the molecules. Amine-containing derivatives displayed positive solvatochromism in the fluorescence spectra indicating a more polar excited state due to an efficient charge migration from the diphenylamine donor to the pyrene π-acceptor. All of the derivatives were tested as emitting dopants with host material 4,4'-bis(9H-carbazol-9-yl)biphenyl (CBP) in a multilayered OLED and found to exhibit bright blue or yellow electroluminescence. The device utilizing 1,3,6,8-tetrasubstituted pyrene derivative as a dopant emitter displayed highest maximum luminescence 4630 cd/m(2) with power efficiency 3.8 lm/W and current efficiency 7.1 cd/A at 100 cd/m(2) attributable to the proper alignment of energy levels that led to the efficient harvesting of excitons. All of the devices exhibited color purity over a wide range of operating voltages.  相似文献   

3.
4.
The use of metal complexes fac-tris(1-phenylpyrazolato-N,C(2)('))cobalt(III) [fac-Co(ppz)(3)], fac-tris(2-phenylpyridinato-N,C(2)(') cobalt(III) [fac-Co(ppy)(3)], and [tris[2-((pyrrole-2-ylmethylidene)amino)ethyl]amine]gallium(III) [Ga(pma)] as materials for hole-transporting layers (HTL) in organic light-emitting diodes (OLEDs) is reported. Co(ppz)(3) and Co(ppy)(3) were prepared by following literature procedures and isolated as mixtures of facial (fac) and meridional (mer) isomers. The more stable fac isomers were separated from the unstable mer forms via column chromatography and thermal gradient sublimation. Crystals of fac-Co(ppz)(3) are monoclinic, space group P2(1)/c, with a = 13.6121(12) A, b = 15.5600(12) A, c = 22.9603(17) A, beta = 100.5 degrees, V = 4781.3(7) A(3), and Z = 8. [Tris[2-((pyrrol-2-ylmethylidene)amino)ethyl]amine]gallium [Ga(pma)] was prepared by the reaction of gallium(III) nitrate with the pmaH(3) ligand precursor in methanol. Ga(pma) crystallizes in the cubic space group I3d with cell parameters a = 20.2377(4) A, b = 20.2377(4) A, c = 20.2377(4) A, beta = 90.0 degrees, V = 8288.6(3) A(3), and Z = 16. These cobalt and gallium complexes are pale colored to colorless solids, with optical energy gaps ranging 2.6-3.36 eV. A two-layer HTL/ETL (ETL = electron-transporting layer) device structure using fac-Co(ppz)(3) and fac-Co(ppy)(3) as the HTL does not give efficient electroluminescence. However, the introduction of a thin layer of a hole-transporting material (N,N'-bis(1-naphthyl)-N,N'-diphenylbenzidine, NPD) as an energy "stair-step" and electron/exciton-blocker dramatically improves the device performance. Both fac-Co(ppz)(3) and fac-Co(ppy)(3) devices give external quantum efficiencies higher than 1.0%, with brightness 5000 and 7000 Cd/m(2) at 10 V, respectively. Ga(pma) also functions as an efficient interface layer, giving device performances very similar to those of analogous devices using NPD as the interface layer. Stability tests have been carried out for Co(ppz)(3)/NPD/Alq(3) and Co(ppy)(3)/NPD/Alq(3) devices. While fac-Co(ppy)(3) gave stable OLEDs, the fac-Co(ppz)(3)-based devices had very short lifetimes. On the basis of the experimental results of chemical oxidation of fac-Co(ppz)(3), the major cause for the fast decay of the fac-Co(ppz)(3) device is proposed to be the decomposition of fac-Co(ppz)(3)(+) in the HTL layer during the device operation.  相似文献   

5.
Organic light-emitting diodes(OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission(AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed fluorescent materials via reverse-intersystem crossing(RISC) from triplet to singlet and the "hot exciton" materials based on hybridized local and charge-transfer(HLCT) states were developed to be a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular luminescent materials possess the advantages of high purity(vs. polymers) and low procession cost(vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials.  相似文献   

6.
Developing efficient deep-blue non-doped organic light-emitting diodes (OLEDs) is of great significance in practical applications. Here, two highly efficient asymmetric anthracene-based fluorescent emitters, 1-phenyl-2-(4-(10-(4-(2-phenyl-1H-phenanthro[9,10-d]imidazole-1-yl)phenyl)anthracen-9-yl)phenyl)-1H-phenanthro [9,10-d]imidazole (PPI-An-NPPI) and 1-phenyl-2-(4-(10-(4-(2,4,5-triphenyl-1H-imidazole-1-yl)phenyl) anthracen-9-yl)phenyl)-1H-phenanthro[9,10-d]imidazole (PPI-An-NPIM), have been designed and synthesized by introducing large steric hindrance imidazole moieties to regulate molecular excited states and photophysical properties. Experimental data show that they have high photoluminescence efficiencies, good thermal stabilities, and suitable energy levels for carrier injection. Theoretical calculations present that their high-lying excited states exhibit dominant locally excited-state characteristics with enhancing oscillator strength compared with anthracene core. The calculated transition dipole moments data show that two molecules are preferentially oriented along the horizontal direction. In addition, some hot exciton mechanism-like channels are also observed and confirmed, which are beneficial for the productive triplet-singlet exciton conversion. The non-doped OLED using PPI-An-NPPI as the emitting layer achieves a maximum external quantum efficiency (EQEmax) of 7.75% and Commission Internationale de L’Eclairage (CIE) coordinates of (0.15, 0.11), whereas PPI-An-NPIM gives a better color purity of CIE (0.14, 10) with an EQEmax of 7.48%. Moreover, all devices exhibit an insignificant efficiency roll-off at high luminescence and still yield an EQE of 7.61% and 7.14% at 1,000 cd/m2. This work provides an interesting insight into developing efficient deep-blue fluorescent emitters for high-performance non-doped OLEDs.  相似文献   

7.
有机电致发光器件(OLEDs)在平板显示和固体照明领域有着广阔的应用前景,发展十分迅速,已实现了商业化.而可溶液加工的OLEDs采用喷墨打印、卷对卷印刷等低成本方式进行加工,在实现低成本、大面积显示及照明器件等方面具有巨大的应用潜力,引起了广泛关注.实现高效溶液加工型OLEDs的实用性需要在光电材料设计合成及器件制备方法上进一步深入研究.本文总结了发光材料与器件国家重点实验室可溶液加工型OLEDs材料及器件的研究进展.  相似文献   

8.
有机电致发光材料已经成为国际上的一个研究热点。利用量子化学方法研究有机电致发光材料的结构与性能间的关系已成为材料科学中不可或缺的重要手段。本文采用理论计算方法对一种2,1,3-苯并噻二唑衍生物的结构进行修饰,研究了杂原子NH、O和Se取代对电子性质、光谱性质、电荷传输性质以及稳定性的影响,这对于了解有机电致发光材料的发光机制,设计新颖的多功能材料是非常有意义的。研究结果表明,NH取代对母体分子的电子性质和光谱性质的影响最明显。NH、O和Se取代衍生物具有较小的空穴重组能,可以作为有机电致发光二极管中的空穴电荷传输材料。静电势能结果表明NH、O和Se取代衍生物的稳定性要高于母体分子的稳定性。  相似文献   

9.
A carbazole homopolymer and carbazole copolymers based on 9,9'-dialkyl-[3,3']-bicarbazolyl, 2,5-diphenyl-[1,3,4]-oxadiazole and 9,9-bis(4-[3,7-dimethyloctyloxy]phenyl)fluorene were synthesized and their electrical and photophysical properties were characterized with respect to their application as host in phosphorescent polymer light-emitting diodes. It is shown that the triplet energy of a polymer depends on the specific connections between its building blocks. Without changing the composition of the polymer, its triplet energy can be increased from 2.3 to 2.6 eV by changing the way in which the different building blocks are coupled together. For poly(9-vinylcarbazole) (PVK), a carbazole polymer often used as host for high-energy triplet emitters in polymer light-emitting diodes, a large hole-injection barrier of about 1 eV exists due to the low-lying HOMO level of PVK. For all carbazole polymers presented here, the HOMO levels are much closer to the Fermi level of a commonly used anode such as ITO and/or a commonly used hole-injection layer such as PEDOT:PSS. This makes high current densities and consequently high luminance levels possible at moderate applied voltages in polymer light-emitting diodes. A double-layer polymer light-emitting diode is constructed comprising a PEDOT:PSS layer as hole-injection layer and a carbazole-oxadiazole copolymer doped with a green triplet emitter as emissive layer that shows an efficacy of 23 cd/A independent of current density and light output.  相似文献   

10.
We report temperature-dependent steady-state and time-resolved fluorescence studies to probe the exciton dynamics in double-wall tubular J-aggregates formed by self-assembly of the dye 3,3'-bis(3-sulfopropyl)-5,5',6,6'-tetrachloro-1,1'-dioctylbenzimidacarbocyanine. We focus on the lowest energy fluorescence band, originating from the inner cylindrical wall. At low temperatures, the experiments reveal a nonexponential decay of the fluorescence, with a typical time scale that depends on the emission wavelength. At these temperatures we also find a dynamic Stokes shift of the fluorescence spectrum and its nonmonotonic dependence on temperature under steady-state conditions. All these data indicate that below about 20 K the excitons in the lowest fluorescence band do not reach thermal equilibrium before emission occurs, while above about 60 K thermalization on this time scale is complete. By comparing the two lowest fluorescence bands, we also find indications for fast energy transfer from the outer to the inner wall. We show that the Frenkel exciton model with diagonal disorder, which previously has been proposed to explain the absorption and linear dichroism spectra of these aggregates, yields a quantitative explanation to the observed dynamics. To this end, we extend the model to account for weak phonon-induced scattering of the localized exciton states; the spectral dynamics are then described by solving a Pauli master equation for the exciton populations.  相似文献   

11.
有机发光器件(OLED)在平板显示和固体照明领域有着广阔的应用前景.过去的二十多年来,OLED的效率得到了大幅提升,但是器件的稳定性仍有待提高.在OLED器件中,通常认为载流子的传输涉及分子反复的氧化还原.因此,OLED材料的电化学性质是影响器件稳定性的重要因素.本文总结了近年来有关OLED材料电化学性质的研究进展,并重点探讨了材料的电化学稳定性与器件稳定性之间的关系.总结发现:(1)单极性材料的电化学不稳定性是导致器件衰减的本质原因之一;(2)双极性材料高度的电化学稳定性有助于提高器件的稳定性,但并不一定保证器件具有高稳定性;(3)有关材料分子结构的稳定性对器件稳定性的影响以及器件的本征衰变机制还有待深入研究.相信,对OLED发光材料稳定性和器件衰变机制的深入研究将有助于提高其他有机光电材料和器件的稳定性,从而推动有机电子学和相关产业的发展.  相似文献   

12.
The Joule heating effect on electroluminescent efficiency is important in the degradation origin of organic light-emitting diodes (OLED). Scanning tunneling microscopy (STM) and photoluminescence (PL) measurements were performed on the guest molecule BT (1,4-bis(benzothiazole-vinyl) benzene), host molecule TPBI (2, 2',2' '-(1,3,5-phenylene)tris-[1-phenyl-1H-benzimidazole]), and their mixture deposited on an HOPG surface to study the OLED degradation mechanism due to thermal heating. At room temperature, BT and TPBI in the mixed layer show good compatibility and high PL intensity, but at higher temperatures, they show phase separation and aggregation into their own domains and a concomitant decrease in PL intensity. The PL intensity loss suggests ineffective energy transfer from TPBI to BT due to phase separation, which may cause OLED degradation. Scanning tunneling spectroscopy (STS) results show that the band gaps of TPBI and BT remain unchanged with the annealing temperature, suggesting that the heat-induced decay of OLED is related to the interfacial structural change rather than the respective molecular band gap. The results provide direct evidence showing how the molecular structures of the mixed layer vary and affect the PL intensity due to temperature.  相似文献   

13.
Molecular glass material (4-(5-(4-(diphenylamino)phenyl)-2-oxadiazolyl)phenyl)triphenylsilane (Ph(3)Si(PhTPAOXD)) was used as the blue light-emitting material in the fabrication of high-performance organic light-emitting diodes (OLEDs). In the optimization of performance, five types of OLEDs were constructed from Ph(3)Si(PhTPAOXD): device I, ITO/NPB/Ph(3)Si(PhTPAOXD)/Alq(3)/Mg:Ag, where NPB and Alq(3) are 1,4-bis(1-naphylphenylamino)biphenyl and tris(8-hydroxyquinoline)aluminum, respectively; device II, ITO/NPB/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag, where TPBI is 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene; device III, ITO/Ph(2)Si(Ph(NPA)(2))(2)/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag, where Ph(2)Si(Ph(NPA)(2))(2) is bis(3,5-bis(1-naphylphenylamino)phenyl)-diphenylsilane, a newly synthesized tetraphenylsilane-containing triarylamine as hole-transporting material; device IV, ITO/Ph(2)Si(Ph(NPA)(2))(2)/NPB/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag; device V, ITO/CuPc/NPB /Ph(3)Si(PhTPAOXD)/Alq(3)/LiF/Al, where CuPc is Cu(II) phthalocyanine. Device performances, including blue color purity, electroluminescence (EL) intensity, current density, and efficiency, vary drastically by changing the device thickness (100-600 A of the light-emitting layer) and materials for hole-transporting layer (NPB and/or Ph(2)Si(Ph(NPA)(2))(2)) or electron-transporting material (Alq(3) or TPBI). One of the superior OLEDs is device IV, showing maximum EL near 19 000 cd/m(2) with relatively low current density of 674 mA/cm(2) (or near 3000 cd/m(2) at 100 mA/cm(2)) and high external quantum efficiency of 2.4% (1.1 lm/W or 3.1 cd/A). The device possesses good blue color purity with EL emission maximum (lambda(max)(EL)) at 460 nm, corresponding to (0.16, 0.18) of blue color chromaticity on CIE coordinates. In addition, the device is reasonably stable and sustains heating over 100 degrees C with no loss of luminance on the basis of the annealing data for device V. Formation of the exciplex at the interface of NPB and Ph(3)Si(PhTPAOXD) layers is verified by EL and photoluminescence (PL) spectra studies on the devices with a combination of different charge transporting materials. The EL due to the exciplex (lambda(max)(EL) at 490-510 nm) can be properly avoided by using a 200 A layer of Ph(3)Si(PhTPAOXD) in device I, which limits the charge-recombination zone away from the interface area.  相似文献   

14.
Spiro-linkage of low molecular weight entities as a new structural concept for the design of new active materials for electroluminescent applications is presented. These spiro linked compounds result in nonpolymeric organic glasses with high thermal stability as can be derived from their high glass transition temperatures (Tg), and characterized by differential scanning calorimetry. Blue emitters based on spiro linked oligophenyles are presented. These compounds are soluble in common organic solvents and show high photoluminescence quantum efficiency in the solid state and high morphologic stability with glass transition temperatures up to 250°C. Charge transport materials based on spiro linked versions of 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) for electron transport, and spiro linked versions of triphenyldiamin derivatives (TPD) for hole transport show improved morphologic properties with nearly unchanged electronic properties compared to the parent compounds. High quality amorphous films can be prepared with the spiro compounds by vapor deposition as well as by simple spin coating.  相似文献   

15.
Two new ligands prepared under solvent free conditions and five aluminum complexes derived from 8-hydroxyquinoline have been synthesized and characterized. The majority of the new aluminum tris(8-hydroxyquinoline) derivatives have nitrogen functionalities at position-4 of the quinolate ligand. The photoluminescence emission wavelengths of the new Alq3 derivatives are shifted according to the electronic properties of the substituents at position-4. Results from differential scanning calorimetry (DSC) investigations of the new Alq3 derivatives indicate that the complexes 9 and 10 are non crystalline and have higher transition glass temperatures than the parent Alq3. The EL measurements of OLED devices with complexes 7, 9, and 10 as emitters revealed that complexes 7, 9, and 10 are efficient emitters in organic light emitting diodes.  相似文献   

16.
2-Hydroxynicotinic acid (HNA) was grafted by 3-(triethoxysilyl)propyl isocyanate (TEPIC) to achieve the molecular precursor HNA-Si through the hydrogen-transfer nucleophilic addition reaction between the hydroxyl group of HNA and the isocyanate group of TEPIC. Then, a chemically bonded rare-earth/inorganic polymeric hybrid material (A) was constructed using HNA-Si as a bridge molecule that can both coordinate to rare-earth ions (HNA-Si-RE) and form an inorganic Si-O network with tetraethoxysilane (TEOS) after cohydrolysis and copolycondensation processes. Further, three types of novel rare-earth/inorganic/organic polymeric hybrids (B-D) were assembled by the introduction of three different organic polymeric chains into the above system. First, methacrylic acid (MAA) [or methacrylic acid and acrylamide (ALM) in the molar ratio of 1:1] was mixed to polymerize (or copolymerize) with benzoyl peroxide (BPO) as the initiator to form poly(methacrylic acid) (PMAA) [or poly(methacrylic and acrylamide) (PMAALM)], and then PMAA or PMAALM was added to the precursor HNA-Si before the assembly of HNA-Si-RE, resulting in the hybrid materials HNA-Si-RE-PMAA (B) and HNA-Si-RE-PMAALM (C). Second, poly(vinylpyrrolidone) (PVP) was added to coordinate to the rare-earth ions by the carbonyl group in the complex HNA-Si-RE, to achieve the hybrid HNA-Si-RE-PVP (D). All of these hybrid materials exhibit homogeneous, regular, and ordered microstructures and morphologies, suggesting the occurrence of self-assembly of the inorganic network and organic chain. Measurements of the photoluminescent properties of these materials show that the ternary rare-earth/inorganic/organic polymeric hybrids present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the binary rare-earth/inorganic polymeric hybrids, indicating that the introduction of the organic polymer chain is a benefit for the luminescence of the overall hybrid system.  相似文献   

17.
Conjugated asymmetric donor-substituted 1,3,5-triazines (ADTs) have been synthesized by nucleophilic substitution of organolithium catalyzed by [Pd(PPh(3))(4)]. Theoretical and experimental investigations show that ADTs possess high solubility and thermostability, high fluorescent quantum yield (35%), low HOMO (-6.0 eV) and LUMO (-2.8 eV), and high triplet energy (E(T), 3.0 eV) according to the different substitution pattern of triazine. The application as host materials for blue PHOLEDs yielded a maximum current efficiency of 20.9 cd A(-1), a maximum external quantum efficiency of 9.8%, and a brightness of 9671 cd m(-2) at 5.4 V, making ADTs good candidates for optoelectronic devices.  相似文献   

18.
姜鸿基 《高分子科学》2017,35(5):611-622
Four novel polymers, poly(3,6-9-decyl-carbazole-alt-1,3-benzene)(PB13CZ), poly(3,6-9-decyl-carbazole-altbis(4-phenyl)(phenyl) phosphine oxide)(PTPPO38CZ), poly(3,6-9-decyl-carbazole-alt-2,4-phenyl(diphenyl) phosphine oxide)(PTPPO13CZ) and poly(3,6-9-decyl-carbazole-alt-bis(3-phenyl)(phenyl) phosphine oxide)(PTTPO27CZ) were synthesized, and their thermal, photophysical properties and device applications were further investigated to correlate the chemical structures with the photoelectric performance of bipolar host materials for phosphorescent organic light emitting diodes. All of them show high thermal stability as revealed by their high glass transition temperatures and thermal decomposition temperatures at 5% weight loss. These polymers have wide band gaps and relatively high triplet energy levels. As a result, the spin coating method was used to prepare the green phosphorescent organic light emitting diodes with polymers PTPPO38 CZ, PTPPO13 CZ and PTTPO27 CZ as the typical host materials. The green device of polymer PTPPO38 CZ as host material shows electroluminescent performance with maximum current efficiency of 2.16 cd·A~(-1), maximum external quantum efficiency of 0.7%, maximum brightness of 1475 cd·m~(-2) and reduced efficiency roll-off of 7.14% at 600 cd·m~(-2), which are much better than those of the same devices hosted by polymers PTTPO27 CZ and PTPPO13 CZ.  相似文献   

19.
The use of low molecular weight, oligomeric and polymeric heterocyclics as electron transport/hole-blocking layers in organic light-emitting diodes is reviewed. The most widely applied materials are π-electron deficient heterocyclics carrying imine nitrogen atoms in the aromatic ring, such as 1,3,4-oxadiazoles, 1,2,4-triazoles, 1,3,5-triazines, and 1,4-quinoxalines. Properties such as redox potentials, ionization potential, electron affinity and charge transport mobility of the materials, if known, are taken into consideration to support the electron injection/transport and hole-blocking effectiveness. It can be generalized that heterocyclic moieties with high reduction potential reduce the interface barriers caused by the band offset between organic material and cathode and are most suitable materials for electron injection in organic electroluminescent devices. These materials are generally characterized by high ionization potential values that contribute towards the hole-blocking property. A general comparison of devices and materials is only possible with limitations owing to the variations in device structure, fabrication, electrode materials, emitter materials, etc. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
2,1,3-Benzothiadiazole(BT) and its derivatives are very important acceptor units used in the development of photoluminescent compounds and are applicable for the molecular construction of organic light-emitting diodes, organic solar cells and organic field-effect transistors. Due to their strong electron-withdrawing ability, construction of molecules with the unit core of BT and its derivatives can usually improve the electronic properties of the resulting organic materials. In this contribution, we review the synthesis of various polymers, small molecules and metal complexes with BT and its derivatives and their applications in organic light-emitting diodes. Furthermore, the molecular design rules based on these cores are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号