首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Wiener index of a graph G is defined as W(G)=∑ u,v d G (u,v), where d G (u,v) is the distance between u and v in G and the sum goes over all the pairs of vertices. In this paper, we first present the 6 graphs with the first to the sixth smallest Wiener index among all graphs with n vertices and k cut edges and containing a complete subgraph of order nk; and then we construct a graph with its Wiener index no less than some integer among all graphs with n vertices and k cut edges.  相似文献   

2.
Let G = (V, E) be a connected graph. The hamiltonian index h(G) (Hamilton-connected index hc(G)) of G is the least nonnegative integer k for which the iterated line graph L k (G) is hamiltonian (Hamilton-connected). In this paper we show the following. (a) If |V(G)| ≥ k + 1 ≥ 4, then in G k , for any pair of distinct vertices {u, v}, there exists k internally disjoint (u, v)-paths that contains all vertices of G; (b) for a tree Th(T) ≤ hc(T) ≤ h(T) + 1, and for a unicyclic graph G,  h(G) ≤ hc(G) ≤ max{h(G) + 1, k′ + 1}, where k′ is the length of a longest path with all vertices on the cycle such that the two ends of it are of degree at least 3 and all internal vertices are of degree 2; (c) we also characterize the trees and unicyclic graphs G for which hc(G) = h(G) + 1.  相似文献   

3.
A shortest path connecting two vertices u and v is called a u-v geodesic. The distance between u and v in a graph G, denoted by dG(u,v), is the number of edges in a u-v geodesic. A graph G with n vertices is panconnected if, for each pair of vertices u,vV(G) and for each integer k with dG(u,v)?k?n-1, there is a path of length k in G that connects u and v. A graph G with n vertices is geodesic-pancyclic if, for each pair of vertices u,vV(G), every u-v geodesic lies on every cycle of length k satisfying max{2dG(u,v),3}?k?n. In this paper, we study sufficient conditions of geodesic-pancyclic graphs. In particular, we show that most of the known sufficient conditions of panconnected graphs can be applied to geodesic-pancyclic graphs.  相似文献   

4.
Let G be a connected graph with diameter diam(G). The radio number for G, denoted by rn(G), is the smallest integer k such that there exists a function f:V(G)→{0,1,2,…,k} with the following satisfied for all vertices u and v: |f(u)-f(v)|?diam(G)-dG(u,v)+1, where dG(u,v) is the distance between u and v. We prove a lower bound for the radio number of trees, and characterize the trees achieving this bound. Moreover, we prove another lower bound for the radio number of spiders (trees with at most one vertex of degree more than two) and characterize the spiders achieving this bound. Our results generalize the radio number for paths obtained by Liu and Zhu.  相似文献   

5.
A k-containerC(u,v) of G between u and v is a set of k internally disjoint paths between u and v. A k-container C(u,v) of G is a k*-container if the set of the vertices of all the paths in C(u,v) contains all the vertices of G. A graph G is k*-connected if there exists a k*-container between any two distinct vertices. Therefore, a graph is 1*-connected (respectively, 2*-connected) if and only if it is hamiltonian connected (respectively, hamiltonian). In this paper, a classical theorem of Ore, providing sufficient conditional for a graph to be hamiltonian (respectively, hamiltonian connected), is generalized to k*-connected graphs.  相似文献   

6.
The reciprocal complementary Wiener number of a connected graph G is defined as
where V(G) is the vertex set, d(u,v|G) is the distance between vertices u and v, d is the diameter of G. We determine the trees with the smallest, the second smallest and the third smallest reciprocal complementary Wiener numbers, and the unicyclic and bicyclic graphs with the smallest and the second smallest reciprocal complementary Wiener numbers.  相似文献   

7.
Exponents of 2-coloring of symmetric digraphs   总被引:1,自引:0,他引:1  
A 2-coloring (G1,G2) of a digraph is 2-primitive if there exist nonnegative integers h and k with h+k>0 such that for each ordered pair (u,v) of vertices there exists an (h,k)-walk in (G1,G2) from u to v. The exponent of (G1,G2) is the minimum value of h+k taken over all such h and k. In this paper, we consider 2-colorings of strongly connected symmetric digraphs with loops, establish necessary and sufficient conditions for these to be 2-primitive and determine an upper bound on their exponents. We also characterize the 2-colored digraphs that attain the upper bound and the exponent set for this family of digraphs on n vertices.  相似文献   

8.
The Wiener index W(G)=∑{u,v}⊂V(G)d(u,v), the hyper-Wiener index and the reverse-Wiener index , where d(u,v) is the distance of two vertices u,v in G, d2(u,v)=d(u,v)2, n=|V(G)| and D is the diameter of G. In [M. Eliasi, B. Taeri, Four new sums of graphs and their Wiener indices, Discrete Appl. Math. 157 (2009) 794-803], Eliasi and Taeri introduced the F-sums of two connected graphs. In this paper, we determine the hyper- and reverse-Wiener indices of the F-sum graphs and, subject to some condition, we present some exact expressions of the reverse-Wiener indices of the F-sum graphs.  相似文献   

9.
Let G=(V,E) be a tree on n?2 vertices and let vV. Let L(G) be the Laplacian matrix of G and μ(G) be its algebraic connectivity. Let Gk,l, be the graph obtained from G by attaching two new paths P:vv1v2vk and Q:vu1u2ul of length k and l, respectively, at v. We prove that if l?k?1 then μ(Gk-1,l+1)?μ(Gk,l). Let (v1,v2) be an edge of G. Let be the tree obtained from G by deleting the edge (v1,v2) and identifying the vertices v1 and v2. Then we prove that As a corollary to the above results, we obtain the celebrated theorem on algebraic connectivity which states that among all trees on n vertices, the path has the smallest and the star has the largest algebraic connectivity.  相似文献   

10.
The distancedG(u,v) between two vertices u and v in a connected graph G is the length of the shortest (u,v) path in G. A (u,v) path of length dG(u,v) is called a (u,v)-geodesic. A set XV is called weakly convex in G if for every two vertices a,bX, exists an (a,b)-geodesic, all of whose vertices belong to X. A set X is convex in G if for all a,bX all vertices from every (a,b)-geodesic belong to X. The weakly convex domination number of a graph G is the minimum cardinality of a weakly convex dominating set of G, while the convex domination number of a graph G is the minimum cardinality of a convex dominating set of G. In this paper we consider weakly convex and convex domination numbers of tori.  相似文献   

11.
The eccentric distance sum is a novel topological index that offers a vast potential for structure activity/property relationships. For a graph G, it is defined as ξd(G)=vVε(v)D(v), where ε(v) is the eccentricity of the vertex v and D(v)=uV(G)d(u,v) is the sum of all distances from the vertex v. Motivated by [G. Yu, L. Feng, A. Ili?, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011) 934-944], in this paper we characterize the extremal trees and graphs with maximal eccentric distance sum. Various lower and upper bounds for the eccentric distance sum in terms of other graph invariants including the Wiener index, the degree distance, eccentric connectivity index, independence number, connectivity, matching number, chromatic number and clique number are established. In addition, we present explicit formulae for the values of eccentric distance sum for the Cartesian product, applied to some graphs of chemical interest (like nanotubes and nanotori).  相似文献   

12.
13.
14.
Given a simple and finite connected graph G, the distance dG(u,v) is the length of the shortest induced {u,v}-path linking the vertices u and v in G. Bandelt and Mulder [H.J. Bandelt, H.M. Mulder, Distance hereditary graphs, J. Combin. Theory Ser. B 41 (1986) 182-208] have characterized the class of distance hereditary graphs where the distance is preserved in each connected induced subgraph. In this paper, we are interested in the class of k-distance hereditary graphs (kN) which consists in a parametric extension of the distance heredity notion. We allow the distance in each connected induced subgraph to increase by at most k. We provide a characterization of k-distance hereditary graphs in terms of forbidden configurations for each k≥2.  相似文献   

15.
Let G be a graph of order n and S be a vertex set of q vertices. We call G,S-pancyclable, if for every integer i with 3≤iq there exists a cycle C in G such that |V(C)∩S|=i. For any two nonadjacent vertices u,v of S, we say that u,v are of distance two in S, denoted by dS(u,v)=2, if there is a path P in G connecting u and v such that |V(P)∩S|≤3. In this paper, we will prove that if G is 2-connected and for all pairs of vertices u,v of S with dS(u,v)=2, , then there is a cycle in G containing all the vertices of S. Furthermore, if for all pairs of vertices u,v of S with dS(u,v)=2, , then G is S-pancyclable unless the subgraph induced by S is in a class of special graphs. This generalizes a result of Fan [G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory B 37 (1984) 221-227] for the case when S=V(G).  相似文献   

16.
A.R. Rao 《Discrete Mathematics》2006,306(14):1595-1600
For a digraph G, let R(G) (respectively, R(k)(G)) be the number of ordered pairs (u,v) of vertices of G such that uv and v is reachable from u (respectively, reachable from u by a path of length ?k). In this paper, we study the range Sn of R(G) and the range of R(k)(G) as G varies over all possible digraphs on n vertices. We give a sufficient condition and a necessary condition for an integer to belong to Sn. These determine the set Sn for all n?208. We also determine for k?4 and show that whenever n?k+(k+1)0.57+2, for arbitrary k.  相似文献   

17.
The eccentric connectivity index \(\xi ^c(G)\) of a connected graph G is defined as \(\xi ^c(G) =\sum _{v \in V(G)}{deg(v) e(v)},\) where deg(v) is the degree of vertex v and e(v) is the eccentricity of v. The eccentric graph, \(G_e\), of a graph G has the same set of vertices as G,  with two vertices uv adjacent in \(G_e\) if and only if either u is an eccentric vertex of v or v is an eccentric vertex of u. In this paper, we obtain a formula for the eccentric connectivity index of the eccentric graph of a regular dendrimer. We also derive a formula for the eccentric connectivity index for the second iteration of eccentric graph of regular dendrimer.  相似文献   

18.
For a given graph G of order n, a k-L(2,1)-labelling is defined as a function f:V(G)→{0,1,2,…k} such that |f(u)-f(v)|?2 when dG(u,v)=1 and |f(u)-f(v)|?1 when dG(u,v)=2. The L(2,1)-labelling number of G, denoted by λ(G), is the smallest number k such that G has a k-L(2,1)-labelling. The hole index ρ(G) of G is the minimum number of integers not used in a λ(G)-L(2,1)-labelling of G. We say G is full-colorable if ρ(G)=0; otherwise, it will be called non-full colorable. In this paper, we consider the graphs with λ(G)=2m and ρ(G)=m, where m is a positive integer. Our main work generalized a result by Fishburn and Roberts [No-hole L(2,1)-colorings, Discrete Appl. Math. 130 (2003) 513-519].  相似文献   

19.
Let G be a connected graph with vertex set V(G). The degree distance of G is defined as ${D'(G) = \sum_{\{u, v\}\subseteq V(G)} (d_G(u) + d_G (v))\, d(u,v)}$ , where d G (u) is the degree of vertex u, d(u, v) denotes the distance between u and v, and the summation goes over all pairs of vertices in G. In this paper, we characterize n-vertex unicyclic graphs with given matching number and minimal degree distance.  相似文献   

20.
For S ? V(G) the S-center and S-centroid of G are defined as the collection of vertices uV(G) that minimize es(u) = max {d(u, v): vS} and ds(u) = ∑u∈S d(u, v), respectively. This generalizes the standard definition of center and centroid from the special case of S = V(G). For 1 ? k ?|V(G)| and uV(G) let rk(u) = max {∑sS d(u, s): S ? V(G), |S| = k}. The k-centrum of G, denoted C(G; k), is defined to be the subset of vertices u in G for which rk(u) is a minimum. This also generalizes the standard definitions of center and centroid since C(G; 1) is the center and C(G; |V(G)|) is the centroid. In this paper the structure of these sets for trees is examined. Generalizations of theorems of Jordan and Zelinka are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号