首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

2.
Raman and FTIR spectra of [Cu(H2O)6](BrO3)2 and [Al(H2O)6](BrO3)3 x 3H2O are recorded and analyzed. The observed bands are assigned on the basis of BrO3- and H2O vibrations. Additional bands obtained in the region of v3 and v1 modes in [Cu(H2O)6](BrO3)2 are due to the lifting of degeneracy of v3 modes, since the BrO3- ion occupies a site of lower symmetry. The appearance v1 mode of BrO3- anion at a lower wavenumber (771 cm(-1)) is attributed to the attachment of hydrogen to the BrO3- anion. The presence of three inequivalent bromate groups in the [Al(H2O)6](BrO3)3 x 3H2O structure is confirmed. The lifting of degeneracy of v4 mode indicates that the symmetry of BrO3- anion is lowered in the above crystal from C3v to C1. The appearance of additional bands in the stretching and bonding mode regions of water indicates the presence of hydrogen bonds of different strengths in both the crystals. Temperature dependent Raman spectra of single crystal [Cu(H2O)6](BrO3)2 are recorded in the range 77-523 K for various temperatures. A small structural rearrangement takes place in BrO3- ion in the crystal at 391 K. Hydrogen bounds in the crystal are rearranging themselves leading to the loss of one water molecule at 485 K. This is preceded by the reorientation of BrO3- ions causing a phase transition at 447 K. Changes in intensities and wavenumbers of the bands and the narrowing down of the bands at 77 K are attributed to the settling down of protons into ordered positions in the crystal.  相似文献   

3.
The reaction of the (borole)rhodium iodide complex [(η-C4H4BPh)RhI]4 with Cp*Li afforded the sandwich compound Cp*Rh(η-C4H4BPh) (4). The reactions of compound 4 with the solvated complexes [Cp*M(MeNO2)3]2+(BF 4 )2 gave triple-decker cationic complexes with the central borole ligand [Cp*Rh(η-η55-C4H4BPh)MCp*]2+(BF 4 )2 (M = Rh (5) or Ir (7)). The structure of complex 4 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1525–1527, September, 2006.  相似文献   

4.
Crystal Structure of (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 . (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 crystallizes from hydrobromic acid solution of Re3Br9 · 2 H2O and NMe4Br at 0 – 5°C. The crystal structure (monoclinic; P21/m (Nr. 11); a = 967.9(3); b = 1 529.7(4); c = 1 710.9(4) pm; β = 91.66(2)°; Z = 2; R = 0.113; Rw = 0.068) has been determined from four-circle diffractometer data. The structure contains two different cluster units of trivalent rhenium, isolated anionic [Re3Br11(H2O)]2? units and neutral cluster units that are connected through crystal water molecules to chains{[Re3Br9(H2O)3](H2O)2}.  相似文献   

5.
Treatment of [Cp*Rh(H(2)O)(3)](OTf)(2) (1) with Me(3)SiNH-t-Bu in acetone gave a hydroxyl-capped half-cubane [Cp*(3)Rh(3)(mu-OH)(3)(mu(3)-OH)](OTf)(3)(t-BuNH(3)) (2). Slow diffusion of Me(3)SiN(3) in diethyl ether into compound in acetone produced an azido-capped half-cubane [Cp*(3)Rh(3)(mu-N(3))(3)(mu(3)-N(3))](OTf)(2) (3). On the other hand, treating 1 with Me(3)SiN(3) in acetone gave an azido-bridged, dinuclear rhodium(III) complex [Cp*Rh(mu-N(3))(OH(2))](2)(OTf)(2) (4). Complexes 2 and 3 represent the first azido- or hydroxyl-capped, incomplete cubane-type Rh clusters. Under appropriate conditions, complexes 2 and 3 could be converted to complex 4. The structures of all products were determined by X-ray diffraction.  相似文献   

6.
7.
The effects of heat treatment on soymilk protein denaturation were studied by differential scanning calorimetry (DSC) and electrophoresis. Transition behavior of soymilk was studied by DSC. Three endotherms were found in DSC heating curves; the transition observed at around 70°C is attributed to the denaturation of 7S (b-conglycinin) and the transition at around 90°C is to 11S (glycinin). The denaturation temperature increased with the increasing soymilk protein content. The change of electrophoretic patterns after heat treatments indicated that soy proteins were dissociated into subunits, some of which coalesced. When the heating temperature is below their denaturation temperature, the protein fractions cannot completely be denatured even after heat exposure for extended periods of time. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
9.
10.
DSC measurements were carried out for [Ni(H2O)6](ClO4)2 (sampleH) and [Ni(D2O)6](ClO4)2 (sampleD) in the temperature range 300–380 K. For both compounds two anomalies on the DSC curves were detected. The results for sampleH are compared to those previously obtained using adiabatic calorimetry method. For both compounds studied in this work the high-temperature transition appears at the same temperature while the low-temperature one is shifted towards higher temperatures in sampleD. Disorder connected with H2O or D2O groups is suggested in the intermediate phase between the low- and high-temperature transitions.  相似文献   

11.
Formal [2 + 2 + 2] addition reactions of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with PhC?CR (R = H, COOEt) give [Cp*Ru(η6‐C6H5? C9H8R)] BF4 (1a, R = H; 2a, R = COOEt). Treatment of [Cp*Ru(H2O)(NBD)]BF4 with PhC?C? C?CPh does not give [2 + 2 + 2] addition product, but [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BF4(3a). Treatment of 1a, 2a, 3a with NaBPh4 affords [Cp*Ru(η6‐C6H5? C9H8R)] BPh4 (1b, R = H; 2b, R = COOEt) and [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BPh4(3b). The structures of 1b, 2b and 3b were determined by X‐ray crystallography. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A series of heptametallic cyanide cages are described; they represent soluble analogues of defect-containing cyanometalate solid-state polymers. Reaction of 0.75 equiv of [Cp*Ru(NCMe)3]PF6, Et(4)N[Cp*Rh(CN)3], and 0.25 equiv of CsOTf in MeCN solution produced (Cs subset [CpCo(CN)3]4[Cp*Ru]3)(Cs subset Rh4Ru3). 1H and 133Cs NMR measurements show that Cs subset Rh4Ru3 exists as a single Cs isomer. In contrast, (Cs subset [CpCo(CN)3]4[Cp*Ru]3) (Cs subset Co4Ru3), previously lacking crystallographic characterization, adopts both Cs isomers in solution. In situ ESI-MS studies on the synthesis of Cs subset Rh4Ru3 revealed two Cs-containing intermediates, Cs subset Rh2Ru2+ (1239 m/z) and Cs subset Rh3Ru3+ (1791 m/z), which underscore the participation of Cs+ in the mechanism of cage formation. 133Cs NMR shifts for the cages correlated with the number of CN groups bound to Cs+: Cs subset Co4Ru4+ (delta 1 vs delta 34 for CsOTf), Cs subset Rh4Ru3 where Cs+ is surrounded by ten CN ligands (delta 91), Cs subset Co4Ru3, which consists of isomers with 11 and 10 pi-bonded CNs (delta 42 and delta 89, respectively). Although (K subset [Cp*Rh(CN)3]4[Cp*Ru]3) could not be prepared, (NH4 subset [Cp*Rh(CN)3]4[Cp*Ru]3) (NH4 subset Rh4Ru3) forms readily by NH4+-template cage assembly. IR and NMR measurements indicate that NH4+ binding is weak and that the site symmetry is low. CsOTf quantitatively and rapidly converts NH4 subset Rh4Ru3 into Cs subset Rh4Ru3, demonstrating the kinetic advantages of the M7 cages as ion receptors. Crystallographic characterization of CsCo4Ru3 revealed that it crystallizes in the Cs-(exo)1(endo)2 isomer. In addition to the nine mu-CN ligands, two CN(t) ligands are pi-bonded to Cs+. M subset Rh4Ru3 (M = NH4, Cs) crystallizes as the second Cs isomer, that is, (exo)2(endo)1, wherein only one CN(t) ligand interacts with the included cation. The distorted framework of NH4 subset Rh4Ru3 reflects the smaller ionic radius of NH4+. The protons of NH4+ were located crystallographically, allowing precise determination of the novel NH4...CN interaction. A competition experiment between calix[4]arene-bis(benzocrown-6) and NH4 subset Rh4Ru3 reveals NH4 subset Rh4Ru3 has a higher affinity for cesium.  相似文献   

13.
Two hydrates of sodium 5,7‐dihydroxy‐6,4′‐dimethoxyisoflavone‐3′‐sulfonate ([Na(H2O)J(C17H13O6SO3)*2H2O,] 1) and nickel 5,7‐dihydroxy‐6,4′‐dimethoxyisoflavone‐3′‐sulfonate ([Ni(H2O)6](C17H13O6SO3)2*4H2O, 2) were synthesized and characterized by IR, 'H NMR and X‐ray diffraction analyses. The hydrate 1 crystallizes in the mono‐clinic system, space group P2(1) with a=0.8201(9) nm, b=0.8030(8) nm, c= 1.5361(16) nm, β=102.052(12)°, V =0.9893(18) nm3, D,= 1.579 g/cm3, Z=2, μ=0.252 nm?1, F(000)=488, R=0.0353, wR=0.0873. The hydrate 2 belongs to triclinic system, space group P‐1 with a=0.7411(3) nm, b=0.8333(3) nm, c=1.7448(7) nm, α= 86.361(6)°, β=86.389(5)°, γ= 88.999(3)°, V=1.0731(7) nm3, D,=1.587 g/cm3, Z=1, μ=0.649 m?1, F(000)= 534. In the structure of 1, the sodium cation is coordinated by six oxygen atom and two adjacent ones are bridged by three oxygen atoms to form an octahedron chain. The C? H…?… hydrogen bonds exist between two isoflavone molecules in the structure of 2. Meanwhile, hydrogen bonds in two compounds, link themselves to assemble two three‐dimensional network structures, respectively.  相似文献   

14.
The mixture of two surfactants (C12EO10-CTAB and C12EO10-SDS) forms lyotropic liquid-crystalline (LLC) mesophases with [Zn(H2O)6](NO3)2 in the presence of a minimum concentration of 1.75 H2O per C12EO10. The metal ion/C12EO10 mole ratio can be increased up to 8.0, which is a record high metal ion density in an LLC mesophase. The metal ion concentration can be increased in the medium by increasing the CTAB/C12EO10 or SDS/C12EO10 mole ratio at the expense of the stability of the LLC mesophase. The structure and some thermal properties of the new mesophase have been investigated using XRD, POM, FTIR, and Raman techniques.  相似文献   

15.
以3-叠氮-1,2,4-三唑为配体,PA–(苦味酸根)或HTNR–(2,4,6-三硝基间苯二酚脱去一个羟基的质子后形成的离子)为外阴离子,制备得到了两种新的配合物:[Zn(AZT)4(H2O)2](PA)2∙4H2O和[Zn(AZT)2(H2O)4](HTNR)2∙4H2O。[Zn(AZT)4(H2O)2](PA)2∙ 4H2O的X射线晶体数据表明,中心Zn2+离子与来自4个AZT分子的N原子和2个H2O分子的O原子配位;而对于[Zn(AZT)2(H2O)4](HTNR)2∙4H2O来说,6个配位原子来自2个AZT分子的N原子和4个H2O分子的O原子。在两种配合物中,AZT配体分子的配位点都是三唑环上的4位N原子。H2O分子对于分子间氢键的形成起到了重要的作用,在分子间氢键的作用下形成了配合物的晶体结构。在[Zn(AZT)4(H2O)2](PA)2∙4H2O的晶体结构中,还存在错位面对面π-π堆积作用,它对于晶体结构的形成和稳定性也起到了重要作用。TG-DTG和DSC分析结果显示,[Zn(AZT)2(H2O)4](HTNR)2∙4H2O的热分解过程不如[Zn(AZT)4(H2O)2](PA)2∙4H2O剧烈,原因在于前者分子中含有较多配位水分子和较少AZT配体分子。感度测试结果表明,[Zn(AZT)4(H2O)2](PA)2∙4H2O有一定的火焰感度,而[Zn(AZT)2(H2O)4](HTNR)2∙4H2O却对热不敏感;两种化合物在撞击和摩擦作用下都表现钝感。  相似文献   

16.
Reaction of the N-(2-pyridyl)carbonylaniline ligand (L) with Cu(NO3)2, Cu(ClO4)2, Zn(ClO4)2, Ni(NO3)2 and PdCl2 gives complexes with stoichiometry [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, [Zn(L)2(H2O)2] (ClO4)2, [Ni(L)2(H2O)Cl](NO3) and PdLCl2. The new complexes were characterized by elemental analyses and infrared spectra. The crystal structures of [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, and [Zn(L)2(H2O)2](ClO4)2 were determined by X-ray crystallography. The cation complexes [M(L)2(H2O)2] contain copper(II) and zinc(II) with distorted octahedral geometry with two N-(2-pyridyl)carbonylaniline (L) ligands occupying the equatorial sites. The hexa-coordinated metal atoms are bonded to two pyridinic nitrogens, two carbonyl oxygens and two water molecules occupying the axial sites. Both the coordinated water molecules and uncoordinated amide NH groups of the N-(2-pyridyl)carbonylaniline (L) ligands are involved in hydrogen bonding, resulting in infinite hydrogen-bonded chains running in one and two-dimensions.  相似文献   

17.
The new compounds CpV(B(3)H(8))(2), CpCr(B(3)H(8))(2), and Cp(2)Co(2)(B(6)H(14)) have been synthesized by treating the pentamethylcyclopentadienyl complexes [CpVCl(2)](3), [CpCrCl(2)](2), and [CpCoCl](2) with NaB(3)H(8). X-ray crystallography shows that CpV(B(3)H(8))(2) and CpCr(B(3)H(8))(2) have the same ligand sets but different molecular structures: the vanadium compound contains two bidentate B(3)H(8) ligands (i.e., bound to the metal center via two vicinal hydrogen atoms), whereas the chromium compound has one bidentate B(3)H(8) ligand and one B(3)H(8) ligand bound in an unprecedented fashion via two geminal hydrogen atoms. The "gem-bound" B(3)H(8) group itself has an atypical structure consisting of a BH(2)-BH(2)-BH(3) triangle with one additional hydrogen atom bridging the unique BH(2)-BH(2) edge. The B-B distances are nearly identical within experimental error at 1.790(5), 1.792(5), and 1.786(6) Angstrom. The relationship between the electronic and molecular structures of the V and Cr compounds is briefly discussed. The structure of Cp(2)Co(2)(B(6)H(14)) can be viewed in two different ways: as a dicobalt complex in which two CpCo units are each bound to four adjacent boron atoms of an S-shaped B(6)H(14) ligand, or as an eight-vertex hypho cluster compound. In the former case, the B(6)H(14) ligand is best regarded as a dianionic bi-borallyl group H(3)B(mu-H)BH(mu-H)BHBH(mu-H)BH(mu-H)BH(3) in which one hydrogen at each end of the chain is involved in an agostic interaction. From a cluster point of view, the structure of Cp(2)Co(2)(B(6)H(14)) can be generated by removing three adjacent high-connectivity vertices from the eleven-vertex closo polyhedron. The Co-B distances vary from 2.008(5) to 2.183(4) Angstrom, and the B-B distances within in the S-shaped chain range from 1.734(8) to 1.889(6) Angstrom. Finally, a new synthesis of the known molybdenum compound Cp(2)Mo(2)(B(5)H(9)) is described; its structure as established by X-ray crystallography closely resembles that of the previously described (C(5)H(4)Me) analogue.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号