首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The recently synthesized 3-tert-butyl-5-methyl-1,2,4-triazole reacted with KBH4 to give the new potassium tris(3-tert-butyl-5-methyl-1,2,4-triazolyl)borate K(Ttz(tBu,Me)) ligand. Ttz(tBu,Me) formed a four-coordinate (Ttz(tBu,Me))CoCl complex and five-coordinate (Ttz(tBu,Me))CoNO3 and (Ttz(tBu,Me))ZnOAc complexes. When these complexes were compared to their Tp(tBu,Me) analogues, it was found that Ttz(tBu,Me) resulted in negligible steric differences. K(Ttz(tBu,Me)) is more water-soluble than K(Tp(tBu,Me)), so bulky tris(triazolyl)borate ligands should lead to functional models for enzyme active sites in an aqueous environment and the creation of water-soluble analogues of Tp catalysts.  相似文献   

2.
With limited reductant and nitrite under anaerobic conditions, copper-containing nitrite reductase (NiR) of Rhodobacter sphaeroides yielded endogenous NO and the Cu(I)NO derivative of NiR. (14)N- and (15)N-nitrite substrates gave rise to characteristic (14)NO and (15)NO EPR hyperfine features indicating NO involvement, and enrichment of NiR with (63)Cu isotope caused an EPR line shape change showing copper involvement. A markedly similar Cu(I)NONiR complex was made by anaerobically adding a little endogenous NO gas to reduced protein and immediately freezing. The Cu(I)NONiR signal accounted for 60-90% of the integrated EPR intensity formerly associated with the Type 2 catalytic copper. Analysis of NO and Cu hyperfine couplings and comparison to couplings of inorganic Cu(I)NO model systems indicated approximately 50% spin on the N of NO and approximately 17% spin on Cu. ENDOR revealed weak nitrogen hyperfine coupling to one or more likely histidine ligands of copper. Although previous crystallography of the conservative I289V mutant had shown no structural change beyond the 289 position, this mutation, which eliminates the Cdelta1 methyl of I289, caused the Cu(I)NONiR EPR spectrum to change and proton ENDOR features to be significantly altered. The proton hyperfine coupling that was significantly altered was consistent with a dipolar interaction between the Cdelta1 protons of I289 and electron spin on the NO, where the NO would be located 3.0-3.7 A from these protons. Such a distance positions the NO of Cu(I)NO as an axial ligand to Type 2 Cu(I).  相似文献   

3.
The electronic and magnetic properties of a series of mixed-sandwich complexes MCp(R)Tp (Cp(R) = Cp or Cp; Tp = hydrotris(pyrazolyl)borate; M = V, Cr, Fe, Co or Ni) have been studied and compared to their homoleptic analogues, MCp(R)(2) and MTp(2). Solid-state magnetic susceptibility measurements and EPR spectroscopic data indicate that complexes with d(3), d(6), and d(8) configurations are similar electronically to their metallocene analogues, except for FeCpTp, which displays a spin equilibrium (S = 0 if S = 2) in solution which was investigated by variable- temperature NMR spectroscopy. The d(2) complex [VCpTp](+) displays magnetic behavior consistent with an orbitally nondegenerate ground state. The d(4) species CrCpTp has a high-spin (S = 2) ground state. The d(7) species CoCpTp is high spin (S = 3/2) whereas its Cp analogue and [NiCpTp](+) are both low-spin (S = 1/2) species. The optical spectra of the d(3), d(6), and d(8) complexes were assigned in a fashion similar to the analogous metallocenes and ligand-field parameters (delta(1) = delta-sigma gap, delta(2) = sigma-pi gap for d-orbitals in axial symmetry) calculated. The analysis shows that for 15-electron species the total ligand-field splitting, delta(TOT), is larger than for their metallocene analogues, whereas for the 18-electron case Delta(TOT) is smaller and for 20-electron systems delta(TOT) is approximately the same. In all cases delta(2) is substantially reduced compared to the metallocenes, and in the majority of cases delta(1) is markedly larger. DFT calculations were performed to investigate further the nature of the ligand environment on the frontier orbitals in these complexes. Orbital energies and compositions were calculated and compared for a series of homoleptic and mixed-sandwich complexes of Ni(II) and across the 1st transition series for MCp(R)Tp species. The ability of Tp (vs Cp) to act as a delta-donor (with respect to the principal molecular axis) imparts significant ligand antibonding character to the delta-orbitals and results in decreased epsilon(pi)-epsilon(delta) values compared to the metallocenes and an increased tendency toward high-spin complexes in the mixed-sandwich complexes. Structure calculations were performed for CrCpTp, [VCpTp](+), and CoCpTp which show substantial distortions from ideal axial symmetry in their crystal structures. The origins of these distortions were confirmed to arise from unequal occupancy of near-degenerate delta- and pi-levels.  相似文献   

4.
The reaction of lanthanide triflates with 2 equiv of potassium hydrotris(dimethylpyrazolyl)borate (Tp(Me)()2) gives good yields of complexes of composition Ln(Tp(Me)()2)(2)OTf. For La (2), Ce (3), Pr (4), and Nd (5) the complexes are seven-coordinate in the solid state with the triflate group coordinated to the metal in unidentate fashion. Complex 5 crystallizes in the monoclinic space group P2(1)/c with a = 17.629(3) ?, b = 12.740(2) ?, c = 18.163(3) ?, beta = 107.35(1) degrees, V = 3893(1) ?(3), Z = 4, and R(w) = 0.0458. For the complexes of Y (1), Sm (6), Eu (7), Gd (8), Dy (9), Ho (10), and Yb (11), the smaller size of the metal ion leads to ejection of the triflate from the coordination sphere and the complexes are ionic in the solid state with a six-coordinate metal center. Complex 11 crystallizes in the monoclinic space group C2/m with a = 16.593(7) ?, b = 13.671(5) ?, c = 8.746(2) ?, beta = 91.66(3) degrees, V = 1983(1) ?(3), Z = 2, and R(w) = 0.0416. In solution, however, complex 6 adopts a seven-coordinate molecular structure with the triflate ion within the first coordination sphere.  相似文献   

5.
The Cu(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC) has been used to synthesize an anthracene-based fluorescent compound that undergoes strong fluorescence quenching in the presence of Cu(II). Fluorescence studies indicate that the compound forms a 1:1 complex and can be used to quantitatively determine micromolar concentrations of Cu(II) in aqueous solution.  相似文献   

6.
CoII and CoIII complexes containing nitrite and tridentate aromatic amine compounds [bis(6-methyl-2-pyridylmethyl)amine (Me2bpa) and bis(2-pyridylmethyl)amine (bpa)] have been prepared as models of the catalytic center in Co-substituted nitrite reductase: [CoII(Me2bpa)(NO2)Cl]2 · acetone (2), CoII(Me2bpa)(NO2)2 (3), CoII(bpa)(NO2)Cl (4), CoII(bpa)(NO2)2 (5), CoIII(Me2bpa)(NO2)(CO3) (6), and CoIII(bpa)(NO2)3 (7). The X-ray crystal structure analyses of these CoII and CoIII complexes indicated that the geometries of the cobalt centers are distorted octahedral and the Me2bpa and bpa with three nitrogen donors exhibit mer- (2, 3, and 7) and fac-form (4 and 6). The coordination mode of nitrite depends on the cobalt oxidation state, to CoII through the oxygen (nitrito coordination, O- and O,O-coordination) and to CoIII through nitrogen (nitro coordination, N-coordination mode). These findings are consistent with the results of their IR spectra, except that another oxygen of the O-coordinated nitrito group in 3 might interact weakly with CoII according to its IR spectrum. Reductions of the nitrite in 2, 3, 4, and 5 to nitrogen monoxide were not accelerated in the presence of proton, perhaps due to the nitrito coordination in these CoII complexes.  相似文献   

7.
Mononuclear pentacoordinate iron complexes with a free coordination site were prepared as mimics of the distal Fe (Fe(d)) in the active site of [FeFe] hydrogenases. The complexes catalyze the electrochemical reduction of protons at mild overpotential.  相似文献   

8.
The isomorphous title complexes, dichlorido[4‐(3,5‐dimethyl‐4H‐1,2,4‐triazol‐4‐yl)benzoic acid‐κN1]zinc(II) dihydrate, [ZnCl2(C11H11N3O2)2]·2H2O, and dibromido[4‐(3,5‐dimethyl‐4H‐1,2,4‐triazol‐4‐yl)benzoic acid‐κN1]zinc(II) dihydrate, [ZnBr2(C11H11N3O2)2]·2H2O, were synthesized and crystallized by slow evaporation of the solvent from a solution of the ligand and either zinc chloride or zinc bromide, respectively, in water/ethanol. The ZnII ions occupy twofold axes in the noncentrosymmetric orthorhombic space group Fdd2. The metal ion is approximately tetrahedrally coordinated by two monodentate triazole groups of the ligands and additionally by two halide ions. The water molecules incorporate the complexes into a three‐dimensional framework made up by hydrogen bonds. Furthermore, each complex possesses two hydrogen‐bond‐donor sites represented by the carboxy groups and two acceptor sites at the noncoordinating N atoms of the triazoles.  相似文献   

9.
The bis(ethene) complex [(Tp)Ir(C(2)H(4))(2)] (3) undergoes reaction with dimethyl acetylenedicarboxylate (DMAD) in acetonitrile solvent at 60 degrees C to give the trispyrazolylborate metallacyclopent-2-ene complex [(Tp)Ir (CH(2)CH(2)C(CO(2)Me)=C(CO(2)Me))(NCMe)] (4). Spectroscopic analysis of a room-temperature reaction between 3 and DMAD in acetonitrile-d(3) provides evidence for the formation of an eta(2)-alkene/eta(2)-alkyne intermediate on the path to 4. The reaction of 3 with DMAD in THF solvent leads to the formation of the THF-ligated metallacyclopent-2-ene complex [(Tp)Ir(CH(2)CH(2)C(CO(2)Me)=C(CO(2)Me))(THF)] (5), which undergoes further reaction with DMAD at 60 degrees C in benzene to give [(Tp)Ir(C(CO(2)Me)=C(CO(2)Me)C(CO(2)Me)=C(CO(2)Me))(eta(2)-CH(2)=CH(2))] (6). Complex 4 was structurally characterized by X-ray crystallography.  相似文献   

10.
Two Ni(II) complexes, [Ni(dmoTSCH)Cl] (1) and [Ni(dmoPhTSCH)Cl] (2) of the tridentate thiosemicarbazone ligands diacetylmonooxime thiosemicarbazone (dmoTSCH2) and diacetylmonooxime (4-phenyl)thiosemicarbazone (dmoPhTSCH2) have been synthesized. X-ray crystal structure of [Ni(dmoTSCPhTSCH)Cl] (2) indicates that the Ni(II) assumes a square planar geometry in the complexes, with the ligand coordinated in a monoanionic N,N,S donor mode and the fourth coordination position of Ni(II) is occupied by a chloride ion. Cyclic and differential pulse voltammetric experiments suggest that the Ni(II) complexes can undergo a two electron reduction at about ?1.0V. It is shown that the Ni(II) complexes in DMF or DMSO solutions can mimic CO-dehydrogenase activity by oxidizing CO to CO2 in presence of a base like NaOAc and a sacrificial electron acceptor like methyl viologen and the colour of the resultant MV.+ can be used to monitor the reaction.  相似文献   

11.
Catechol 1,2-dioxygenase (CTD) and protocatechuate 3,4-dioxygenase (PCD) are bacterial non-heme iron enzymes, which catalyse the oxidative cleavage of catechols tocis, cis-muconic acids with the incorporation of molecular oxygen via a mechanism involving a high-spin ferric centre. The iron(III) complexes of tripodal phenolate ligands containing N3O and N2O2 donor sets represent the metal binding region of the iron proteins. In our laboratory iron(III) complexes of mono- and bisphenolate ligands have been studied successfully as structural and functional models for the intradiol-cleaving catechol dioxygenase enzymes. The single crystal X-ray crystal structures of four of the complexes have been determined. One of thebis-phenolato complexes contains a FeN2O2Cl chromophore with a novel trigonal bipyramidal coordination geometry. The Fe-O-C bond angle of 136.1‡ observed for one of the iron(III) complex of a monophenolate ligand is very similar to that in the enzymes. The importance of the nearby sterically demanding coordinated -NMe2 group has been established and implies similar stereochemical constraints from the other ligated amino acid moieties in the 3,4-PCD enzymes, the enzyme activity of which is traced to the difference in the equatorial and axial Fe-O(tyrosinate) bonds (Fe-O-C, 133, 148‡). The nature of heterocyclic rings of the ligands and the methyl substituents on them regulate the electronic spectral features, FeIII/FeII redox potentials and catechol cleavage activity of the complexes. Upon interacting with catecholate anions, two catecholate to iron(III) charge transfer bands appear and the low energy band is similar to that of catechol dioxygenase-substrate complex. Four of the complexes catalyze the oxidative cleavage of H2DBC by molecular oxygen to yield intradiol cleavage products. Remarkably, the more basic N-methylimidazole ring in one of the complexes facilitates the rate-determining productreleasing phase of the catalytic reaction. The present study provides support to the novel substrate activation mechanism proposed for the intradiol-cleavage enzymes.  相似文献   

12.
Lithium difluoro(oxalato)borate was investigated as a functional additive for non-aqueous electrolytes for lithium-ion batteries. It was found that the addition of small amount of lithium difluoro(oxalato)borate to the LiFP6-based electrolyte can significantly improve both the capacity retention and the power retention of lithium-ion cells. Unlike other additives, lithium difluoro(oxalato)borate only slightly increased the interfacial impedance of the cells, resulting in good initial power capability. Therefore, lithium difluoro(oxalato)borate is a promising additive for high-performance lithium-ion batteries for power applications, such as hybrid electrical vehicles.  相似文献   

13.
Recent spectroscopic data suggest that the Co(III) site in Co-containing nitrile hydratase is ligated to carboxamido nitrogens and thiolato sulfurs and most possibly one or more of the bound thiolates exist as sulfenato and/or sulfinato groups. The absence of any Co(III) complex with such coordination makes it quite difficult to predict the reactivity of this kind of Co(III) site. In this paper, the Co(III) complexes of two designed ligands PyPepSH2 (1) and PyPepRSH2 (2) have been reported. The two complexes, namely, (Et4N)[Co(PyPepS)2] (3) and Na[Co(PyPepRS)2] (4) are the first examples of Co(III) complexes with carboxamido nitrogens and thiolato sulfurs as donors. The average Co(III)-Namido and Co(III)-S distances in these complexes lie in the range 1.90-1.92 and 2.22-2.24 A, respectively. Reaction of H2O2 with both complexes readily affords Na[Co(PyPepSO2)2] (5) and Na[Co(PyPepRSO2)2] (6), species in which the thiolato sulfurs are converted to sulfinato (SO2) groups. Such conversion also occurs when solutions of 3 and 4 are exposed to dioxygen in the presence of activated charcoal. These reactions are clean and the S --> SO2 transformation does not introduce significant changes in the metric parameters of these complexes. The reactivity of 3 and 4 indicates that the bound Cys-sulfurs around the biological Co(III) site could be oxidized to sulfinato groups.  相似文献   

14.
The mechanism of nitrite reduction at the Cu(II) center of both copper nitrite reductase and a number of corresponding synthetic models has been investigated by using both QM/MM and cluster calculations employing density functional theory methods. The mechanism in both cases is found to be very similar. Initially nitrite is bound in a bidentate fashion to the Cu(II) center via the two oxygen atoms. Upon reduction of the copper center, the two possible coordination modes of the protonated nitrite, by either nitrogen or a single oxygen atom, are close in energy, with nitrogen coordination probably preferred. Further protonation of this species leads to N-O bond cleavage, and an electron transfer from the Cu(I) center to the N-O+ ligand, resulting in loss of NO and regeneration of the resting state of the enzyme having a bound water molecule.  相似文献   

15.
The structural and spectroscopic characterization of mononuclear iron(III)-catecholato complexes of ligand L4 (methyl bis(1-methylimidazol-2-yl)(2-hydroxyphenyl)methyl ether, HL4) are described, which closely mimic the enzyme-substrate complex of the intradiol-cleaving catechol dioxygenases. The tridentate, tripodal monoanionic ligand framework of L4 incorporates one phenolato and two imidazole donor groups and thus well reproduces the His2Tyr endogenous donor set. In fact, regarding the structural features of [FeIII(L4)(tcc)(H2O)] (5.H2O, tcc = tetrachlorocatechol) in the solid state, the complex constitutes the closest structural model reported to date. The iron(III)-catecholato complexes mimic both the structural features of the active site and its spectroscopic characteristics. As part of its spectroscopic characterization, the electron paramagnetic resonance (EPR) spectra were successfully simulated using a simple model that accounts for D strain. The simulation procedure showed that the observed g = 4.3 line is an intrinsic part of the EPR envelope of the studied complexes and should not necessarily be attributed to a highly rhombic impurity. [FeIII(L4)(dtbc)(H2O)] (dtbc = 3,5-di-tert-butylcatechol) was studied with respect to its dioxygen reactivity, and oxidative cleavage of the substrate was observed. Intradiol- and extradiol-type cleavage products were found in roughly equal amounts. This shows that an accurate structural model of the first-coordination sphere of the active site is not sufficient for obtaining regioselectivity.  相似文献   

16.
The title compound crystallizes in the monoclinic space group P21/n with a = 8.706(1), b = 9.192(1), c = 15.261(2) Å, β = 94.740(3)°, V = 1217.0(3) Å3, Z = 4, Dcalc = 2.278 g cm–3. The tris(imidazolyl)borate ligand bridges between three thallium atoms. The structure consists of one‐dimensional twisted ladder‐like strands.  相似文献   

17.
Four mononuclear Cu(I) complexes of 2-(2'-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh(3), bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh(3))(2)][BF(4)] (1), [Cu(pbb)(dppe)][BF(4)] (2), [Cu(pbb)(DPEphos)][BF(4)] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P-Cu-P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV-vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 micros). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2'-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes.  相似文献   

18.
The syntheses of enantiomeric and diastereoisomeric Bpz4M★(CO)(NO)(CNR) complexes (M = Mo, W; R = CH2CH3, CH2Ph, C★H(CH3)(C6H5)) are reported. When R = CH2CH3 or CH2C6H5 the presence of the diastereotopic methylene hydrogens does not allow the detection of the neighbouring chiral center, because they are magnetically equivalent. The diastereoisomeric complexes show different 1H NMR signals, but cannot be resolved by liquid chromatography or by crystallization.  相似文献   

19.
Four known electronically diverse cobalt(II) acetylacetonate derivatives were synthesized by replacement of the acetylacetonate methyl groups with combinations of tert-butyl, ethoxy, and trifluoromethyl groups in order to study the effect of catalyst electronic properties on the reaction rate and product yield of the cobalt-catalyzed reaction between haloalkenes and butylzinc iodide. Infrared spectroscopy of these compounds showed an increase in the CO stretching frequency as the ligand substituents became more electron withdrawing. These compounds, in addition to cobalt(II) acetylacetonate itself, were evaluated as catalysts for the coupling reaction between (E)-1-iodo-1-octene and butylzinc iodide to form (E)-5-dodecene. Faster reaction rates were observed and higher yields of 5-dodecene were produced when catalysts containing electron-donating ligands were employed. Side reactions, including the homocoupling of 1-iodo-1-octene to produce 7,9-hexadecadiene, were also observed under the reported reaction conditions. The rate of side-product formation was more competitive with the rate of the cross-coupling reaction when slower, electron-deficient catalysts were employed.  相似文献   

20.
The use of the bulky hydrotris(3-mesitylpyrazolyl)borate anionic ligand has allowed the synthesis of stable Tp(Ms)Cu(alkyne) complexes (alkyne = 1-hexyne, 1, phenylacetylene, 2, and ethyl propiolate, 3). The spectroscopic and structural features of these compounds and their relative reactivity have been examined, indicating the existence of a low π back-bonding from the copper(I) centre to the alkyne. Ligand exchange experiments have shown that terminal alkyne adducts are more stable than internal alkyne analogues. In good accordance with this, the previously reported alkyne cyclopropenation reaction catalysed by the Tp(x)Cu complexes can be rationalized and correlated with their relative stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号