首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high density of 1.02×1011 cm−2 of InAs islands with In0.15Ga0.85As underlying layer has been achieved on GaAs (1 0 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 μm photoluminescence (PL) from InAs islands with In0.15Ga0.85As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dots devices.  相似文献   

2.
In this paper, we present the results of structural and photoluminescence (PL) studies on vertically aligned, 20-period In0.33Ga0.67As/GaAs quantum dot stacks, grown by molecular beam epitaxy (MBE). Two different In0.33Ga0.67As/GaAs quantum dot stacks were compared. In one case, the In0.33Ga0.67As layer thickness was chosen to be just above its transition thickness, and in the other case, the In0.33Ga0.67As layer thickness was chosen to be 30% larger than its transition thickness. The 2D–3D growth mode transition time was determined using reflection high-energy electron diffraction (RHEED). Structural studies were done on these samples using high-resolution X-ray diffraction (HRXRD) and cross-sectional transmission electron microscopy (XTEM). A careful analysis showed that the satellite peaks recorded in X-ray rocking curve show two types of periodicities in one sample. We attribute this additional periodicity to the presence of an aligned vertical stack of quantum dots. We also show that the additional periodicity is not significant in a sample in which the quantum dots are not prominently formed. By analyzing the X-ray rocking curve in conjunction with RHEED and PL, we have estimated the structural parameters of the quantum dot stack. These parameters agree well with those obtained from XTEM measurements.  相似文献   

3.
We report the structural and electrical properties of InAsSb epilayers grown on GaAs (0 0 1) substrates with mid-alloy composition of 0.5. InSb buffer layer and InAsxSb1−x step-graded (SG) buffer layer have been used to relax lattice mismatch between the epilayer and substrate. A decrease in the full-width at half-maximum (FWHM) of the epilayer is observed with increasing the thickness of the InSb buffer layer. The surface morphology of the epilayer is found to change from 3D island growth to 2D growth and the electron mobility of the sample is increased from 5.2×103 to 1.1×104 cm2/V s by increasing the thickness of the SG layers. These results suggest that high crystalline quality and electron mobility of the InAs0.5Sb0.5 alloy can be achieved by the growth of thick SG InAsSb buffer layer accompanied with a thick InSb buffer layer. We have confirmed the improvement in the structural and electrical properties of the InAs0.5Sb0.5 epilayer by quantitative analysis of the epilayer having a 2.09 μm thick InSb buffer layer and 0.6 μm thickness of each SG layers.  相似文献   

4.
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively.  相似文献   

5.
Dynamic mechanical properties of an amorphous La55Al25Ni20 alloy were measured by a forced oscillation method in the temperature range from room temperature to 453 K, just below the glass transition temperature (Tg = 481 K). The internal friction at a constant frequency 62.8 rad/s of this alloy showed a peak at about 400 K and the peak position shifts with frequency. Structural relaxation reduces the magnitude of the relaxation peak but has little affect on the peak position. Using the time-temperature superposition process, master curves for storage E′ (ln ω) and loss E″ (ln ω) moduli are constructed. Activation energy of the relaxation obtained from shift factors is low, 100 kJ/mol, which is close to that for diffusion of the Al in Al and Ni in Al. The relaxation spectra are very broad with a half width of 2 3 decades.  相似文献   

6.
An Mg-doped p-GaN layer was grown by the metalorganic chemical vapor deposition method. The dissociation extent of hydrogen-passivated Mg acceptors in the p-GaN layer through Mg activation annealing was estimated by using room-temperature cathodoluminescence (CL) spectroscopy. The CL measurement revealed that the CL spectra intensities tend to increase with increasing the activation annealing temperature. The sample annealed at 925 °C showed the most intense emission and the narrowest width among the emission peaks. Consequently, it was the most excellent dissociation extent of Mg–H complexes caused by the Mg activation annealing. The hole concentration under this optimum condition was 1.3×1017 cm−3 at room temperature. The photoluminescence (PL) measurement showed a 2.8 eV band having characteristically a broad peak in heavily Mg-doped GaN at room temperature. By analyzing the PL results, we learned that this band was associated with the deep donor–acceptor pair (DAP) emission rather than with the emission caused by the transition from the conduction band to deep acceptor level. The four emission peaks in the resolved 2.8 eV band were emitted by transiting from deep donor levels of 0.14, 0.26, 0.40, and 0.62 eV below the conduction band to the shallow Mg acceptor level of 0.22 eV above the valence band.  相似文献   

7.
In situ reflection high energy electron diffraction (RHEED) has been used to study the time evolution during self-assembled molecular beam epitaxy (MBE) growth of InAs quantum dots on GaAs. Using a special data acquisition technique, two characteristic time constants are determined very precisely: the time tc up to the first appearance of InAs dots and the time tf it takes to complete the 2D–3D transition of all islands. Surprisingly, we find that tc increases with temperature which disagrees with a thermally activated process. In contrast to this, tf behaves Arrhenius-like and an activation energy of Ef0.39 eV is determined. Furthermore, the sum tc+tf does not depend significantly on temperature and corresponds to an InAs coverage of 2.0 monolayers. A second focus of this paper is the study of dissolution of InAs dots after interruption of the As flux. From the experiments, an activation energy of 3.2 eV for desorption of In located on top of the wetting layer is determined, whereas direct desorption from the wetting layer corresponds to an activation energy of 3.4 eV.  相似文献   

8.
Fine-sized ZnO–B2O3–CaO–Na2O–P2O5 glass powders with spherical shape were directly prepared by high temperature spray pyrolysis. The ZnO–B2O3–CaO–Na2O–P2O5 powders prepared by spray pyrolysis at temperatures above 1200 °C had broad peaks at around 30° in the XRD patterns. The glass transition temperatures (Tg) of the glass powders obtained by spray pyrolysis at preparation temperatures between 900 °C and 1400 °C were near 480 °C regardless of the preparation temperatures. The dielectric layers formed from the glass powders prepared by spray pyrolysis at preparation temperatures above 1300 °C had clean surface and dense inner structure at the firing temperature of 580 °C. The transmittance of the dielectric layer formed from the glass powders obtained by spray pyrolysis at preparation temperature of 1400 °C was 90% at the firing temperature of 580 °C, in which the thickness of the dielectric layer was 13 μm. The UV cutoff edges gradually shift towards longer wavelength with increasing the preparation temperature of glass powders and the firing temperature of dielectric layers.  相似文献   

9.
The photoluminescence (PL) mechanisms of as-grown GaInNAs/GaAs quantum well were investigated by temperature-dependent PL measurements. An anomalous two-segmented trend in the PL peak energy vs. temperature curve was observed, which has higher and lower temperature-dependent characteristics at low temperature (5–80 K) and high temperature (above 80 K), respectively. The low and high-temperature segments were fitted with two separate Varshni fitting curves, namely Fit_low and Fit_high, respectively, as the low-temperature PL mechanism is dominated by localized PL transitions while the high-temperature PL mechanism is dominated by the e1–hh1 PL transition. Further investigation of the PL efficiency vs. 1/kT relationship suggests that the main localized state is located at 34 meV below the e1 state. It is also found that the temperature (80 K) at which the PL full-width at half-maximum changes from linear trend to almost constant trend correlates well with the temperature at which the PL peak energy vs. temperature curve changes from Fit_low to Fit_high.  相似文献   

10.
采用传统的固相法合成了近零膨胀氧化物功能陶瓷材料Zr0.5Hf0.5V1.4P0.6O7,用X射线衍射(XRD)、Raman光谱和热膨胀法对Zr0.5Hf0.5V1.4P0.6O7的热膨胀系数、各向同性和相变进行了测试,通过Hf4+/P5+共掺杂使得材料具有较低的热膨胀系数,研究发现合成的Zr0.5Hf0.5V1.4P0.6O7具有Pa3立方相结构,从334 K附近到673 K较宽的温度范围内的线性热膨胀系数为-1.56×10-6 K-1,表现出稳定的近零热膨胀特性。由于固溶体内部微结构的影响造成膨胀仪实验结果与变温X射线衍射结果存在一定的差距。Zr0.5Hf0.5V1.4P0.6O7具有的近零膨胀特性为通过负热膨胀材料合成膨胀系数可控的材料提供了基础。  相似文献   

11.
Eu-doped GaN with various Eu concentrations were grown by gas source molecular beam epitaxy, and their structural and optical properties were investigated. With increasing Eu concentration from 0.1 to 2.2 at%, deterioration of the structural quality was observed by reflection high-energy electron diffraction, atomic force microscopy and X-ray diffraction. Such a deterioration may be caused by an enhancement of island growth and formation of dislocations. On the other hand, room temperature photoluminescence spectra showed red emission at 622 nm due to an intra-atomic f–f transition of Eu3+ ion and Fourier transform infrared spectra indicated an absorption peak at about 0.37 eV, which may be due to a deep defect level. The intensity of the red luminescence and the defect-related absorption peak increased with increasing Eu concentration, and a close correlation in the increasing behavior was observed between them. These results suggest that the deep defect level plays an important role in the radiative transition of Eu3+ ion in GaN and the optical process for the luminescence at 622 nm was discussed with relation to the defect.  相似文献   

12.
In situ ultra high vacuum scanning probe microscopy (SPM) and low-temperature photoluminescence (PL) studies have been performed on Si-doped self-organized InAs/GaAs quantum dots samples to investigate the Si doping effects. Remarkably, when Si is doped in the sample, according to the SPM images, more small dots are formed when compared with images from undoped samples. On the PL spectra, high-energy band tail which correspond to the small dots appear, with increasing doping concentration, the integral intensity of the high-energy band tail account for the whole peak increase too. We relate this phenomenon to a model that takes the Si atom as the nucleation center for QDs formation.  相似文献   

13.
The morphology and chemistry of epitaxial MgB2 thin films grown using reactive Mg evaporation on different substrates have been characterized by transmission electron microscopy methods. For polycrystalline alumina and sapphire substrates with different surface planes, an MgO transition layer was found at the interface region. No such layer was present for films grown on MgO and 4-H SiC substrates, and none of the MgB2 films had any detectable oxygen incorporation nor MgO inclusions. High-resolution electron microscopy revealed that the growth orientation of the MgB2 thin films was closely related to the substrate orientation and the nature of the intermediary layer. Electrical measurements showed that very low resistivities (several μΩ cm at 300 K) and high superconducting transition temperatures (38 to 40 K) could be achieved. The correlation of electrical properties with film microstructure is briefly discussed.  相似文献   

14.
III–V semiconductor Indium Arsenide (InAs) nanocrystals embedded in silica glasses was synthesized by combining the sol–gel process and heat treatment in H2 gas. The size of InAs nanocrystals can be easily controlled via changing the In and As content in the starting materials and the heating temperature in a H2 gas atmosphere. Absorption measurements indicate a blue shift in energy with a reduction on the In and As content in the SiO2 gel glasses as a result of quantum confinement effects. A near-infrared photoluminescence with peak at 3.40 μm was observed at 6 K under 514.5 nm Ar+ laser excitation from InAs nanocrystals embedded in the silica gel glasses.  相似文献   

15.
Data are presented on the luminescence characteristics of InGaP/InAlP heterostructures with oxidized InAlP cladding layers grown by metalorganic chemical vapor deposition. The structures are grown on GaAs substrates and consist of either a 20 nm thick In0.5Ga0.5P quantum well or a 0.75 μm InGaP layer sandwiched between two InAlP bulk barriers or between two 10-period In0.5Al0.5P/InxGa1−xP strain-modulated superlattice heterobarriers, where x varies from 0.5 to 0.45 and the period of the superlattice is 3 nm. The top InAlP cladding layer of the InAlP/InGaP heterostructures is oxidized for 2–5.5 h at 500°C in an ambient of H2O vapor saturated in a N2 carrier gas. Photoluminescence and time-resolved photoluminescence studies at room temperature show that, as a result of the oxidation of a portion of the top InAlP cladding layer, the photoluminescence emission intensity and lifetime from the InGaP QWs increase significantly.  相似文献   

16.
Surface photoabsorption (SPA) measurements were used to clarify the CuPt ordering mechanism in Ga0.5In0.5P layers grown by organometallic vapor phase epitaxy. The CuPt ordering is known to be strongly affected by the growth temperature and the input partial pressure of the phosphorus precursor, i.e. the V/III ratio. The SPA peak at 400 nm was found to be a measure of the concentration of [ 10]-oriented phosphorus dimers on the surface, which are characteristic of the (2 × 4) reconstruction. Both ordering, measured using the low temperature photoluminescence peak energy, and the SPA signal difference due to P dimers were studied versus the growth temperature and V/III ratio. The degree of order decreases markedly with increasing growth temperature above 620°C at a constant V/III ratio of 40. This corresponds directly to a decrease of the [ 10]-oriented P dimer concentration on the surface determined using SPA. Below 620°C, the degree of order decreases as the growth temperature decreases, even though the concentration of P dimers increases. The presence of an isotropic “excess P” phase observed in the SPA spectrum at 480 nm might be responsible for the decrease of CuPt ordering, although it has previously been attributed to the slow rearrangement of adatoms. The degree of order is found to decrease monotonically with decreasing V/III ratio in the range from 160 to 8 at 670°C and from 40 to 8 at 620°C. This also corresponds directly to the decrease of the P dimer concentration on the surface measured using SPA. At 620°C and a V/III ratio of 160, the degree of order decreased despite an increase of the P dimer concentration. This may also be due to the formation of the isotropic “excess P” phase on the surface. The direct correlation of the [ 10]-oriented P dimer concentration and the degree of order with changes in temperature ( ≥ 620°C) and V/III ratio (≤ 160 at 670°C and ≤ 40 at 620°C) suggests that, in this range of growth parameters, the (2 × 4) surface reconstruction is necessary to form the CuPt structure, in agreement with published theoretical studies.  相似文献   

17.
《Journal of Non》2000,270(1-3):137-146
The Ge25Ga5Se70 and Ge30Ga5Se65 pure and Pr3+-doped glasses were prepared by direct synthesis from elements and PrCl3. It was found that up to 1 mol% PrCl3 can be introduced in the Ge25Ga5Se70 and Ge30Ga5Se65 glasses. Both types of glasses with overstoichiometric and substoichiometric content of Se were homogeneous and of black color. The optical energy gap is Eoptg=2.10 eV, and the glass transition temperature is Tg=543 K for Ge25Ga5Se70 and Tg=633 K for Ge30Ga5Se65. The long-wavelength absorption edge is near 14 μm and it corresponds to multiphonon processes. Doping by Pr3+ ions creates absorption bands in transmission spectra, which can be assigned to the electron transitions from the ground 3H4 level to the higher energy levels of Pr3+ ions 3H5, 3H6, 3F2, 3F3 and 3F4, respectively. By excitation with YAG:Nd laser line (1064 nm), two intense luminescence bands (1343 and 1601 nm) were excited. The first band can be ascribed to electron transitions between 1G4 and 3H5 energy levels of Pr3+ ions. Full width at half of maximum (FWHM) of the intensity of luminescence was found to be 70 nm for (Ge25Ga5Se70)1 − x(PrCl3)x and (Ge30Ga5Se65)1 − x(PrCl3)x glasses. The FWHM in selenide glasses is lower than in halide and sulphide glasses. The second luminescence band (1601 nm) can be probably ascribed to the transitions between 3F3 and 3H4 energy levels of Pr3+ ions. The absorption and luminescence spectra of Pr3+ ions in studied glasses are slightly influenced by stoichiometry of glassy matrix. The Raman spectra of studied glasses were deconvoluted and assignment of Raman bands to individual vibration modes of basic structural units was suggested. The structure of studied glasses is mainly formed by corner-sharing and edge-sharing GeSe4 tetrahedra. The vibration modes of Ga-containing structural units were not found, they are apparently overlapping with Ge-containing structural units due to small difference between atomic weights of Ge and Ga. In the glasses with substoichiometry of Se, the Ge–Ge bonds of Ge2Se6 structural units were found. In Se-rich glasses the Se–Se vibration modes were found. In all studied glasses also ‘wrong' bonds between like atoms were found in small amounts. Maximum phonon energy of studied glasses is 320 cm−1.  相似文献   

18.
We have grown GaAs quantum wires having nominal cross-sectional dimensions of 20×20 nm2 buried in AlGaAs layers, by lateral metalorganic molecular beam epitaxy on the terraced sidewalls of mesa-grooved ( ) substrates. In the photoluminescence spectrum of this sample at 77 K, a dominant emission has been observed at a peak wavelength of 780 nm which corresponds to a blue shift of 80 meV from the GaAs bulk transition. Emission spectroscopy from different positions and imaging by cathodoluminescence have demonstrated that this emission was generated from the sidewalls, indicating that it originates from the quantum wire.  相似文献   

19.
YBa2Cu4O8 is a stoichiometric oxide superconductor of Tc80 K. Unlike YBa2Cu3O7−δ, this compound is free from oxygen vacancy or twin formation and does not have any microscopic disorder in the crystal. Doping with Ca raises its Tc to 90 K. The compound is a promising superconductor for technological application. Up to now, single crystals have not been grown without using specialized apparatus with extremely high oxygen pressure up to 3000 bar and at over 1100 °C due to the limited range of reaction kinetics of the compound. This fact has delayed the progress in the study of its physical properties and potential applications. We present here a simple growth method using KOH as flux that acts effectively for obtaining high-quality single crystals in air/oxygen at the temperature as low as 550 °C. As-grown crystals can readily be separated from the flux and exhibit a perfect orthorhombic morphology with sizes up to 0.7×0.4×0.2 mm3. Our results are reproducible and suggest that the crystals can be grown using a conventional flux method under ambient condition.  相似文献   

20.
We report on studies of an In0.12Ga0.88N/GaN structure with three 35 Å thick quantum wells (QWs) grown by metalorganic vapor phase epitaxy with employment of mass transport. The mass-transport regions demonstrate a threading dislocation density less than 107 cm−2. The photoluminescence (PL) spectrum is dominated by a 40 meV—narrow line centered at 2.97 eV at 2 K. This emission has a typical PL decay time of about 5 ns at 2 K within the PL contour. An additional line with longer decay time (about 200 ns) is observed at an energy about 2.85 eV. The position of this line shifts towards higher energies with increasing excitation power. The data are consistent with a model, where the PL originates from at least two nonequivalent QWs, which could be realized due to a potential gradient across the layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号