首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
采用自行研制的915 MHz/75 kW高功率微波等离子体化学气相沉积(MPCVD)装置,在输入功率60 kW,沉积气压20 kPa的条件下制备了直径5英寸的大面积自支撑金刚石膜,并对金刚石膜的厚度,热导率,线膨胀系数,结晶质量,光学透过率等参数进行了表征.实验结果表明,制备的大面积自支撑金刚石厚膜均匀完整,相关性能参数达到较高水平,具有较好质量.热学级金刚石膜的生长厚度超过5 mm,生长速率达到12.5 μm/h;室温25℃热导率2010W·m-1 ·K-1,180℃条件下的热导率仍达到1320 W·m-1·K-1;室温25.4℃时线膨胀系数为1.07×10-6℃-1,300℃时升高至2.13×10-6℃-1.光学级金刚石膜的生长厚度接近1 mm,生长速率约为2.3 μm/h,厚度偏差小于±2.7;;双面抛光后的金刚石膜厚度约为700 μm,其Raman半峰宽为2.0 cm-1,PL谱中未出现明显与氮相关的杂质峰;其光学吸收边约为223 nm,270 nm处的紫外透过率接近60;,在8~25 μn范围内的光学透过率超过70;.  相似文献   

2.
高功率MPCVD金刚石膜透波窗口材料制备研究   总被引:1,自引:0,他引:1  
使用自行研制的椭球谐振腔式MPCVD装置,以H2-CH4为气源,在沉积功率8 kW条件下,对大面积金刚石膜透波窗口材料进行了制备研究.分别使用扫描电镜、Raman、分光光谱仪、热导率测试仪和空腔谐振法对金刚石膜的表面形貌、品质、光透过率、热导率和微波复介电常数等进行了表征及测试.实验结果表明,使用自行研制的椭球谐振腔式MPCVD装置,能够满足较高功率下高品质金刚石膜的快速沉积;抛光后的自支撑金刚石膜具有高的光学透过率和热导率,在23 ~ 36 GHz频率范围内微波介电损耗小于1×10-4,有着良好的微波介电性能,是较为理想的透波窗口材料.  相似文献   

3.
根据小角散射原位加载测试的应用需求,采用自行研制的2.45 GHz/6 kW穹顶式微波等离子体化学气相沉积(MPCVD)装置进行高质量单晶金刚石窗口的制备,对晶托结构进行改进,并系统研究了沉积温度对单晶金刚石生长速率、表面形貌、结晶质量、X射线透过率的影响.实验结果表明,新型晶托结构使籽晶表面温度分布均匀,有利于提升单晶金刚石结晶质量;沉积温度1000℃下制备单晶金刚石样品表面形貌、拉曼曲线半峰宽、摇摆曲线半峰宽、X射线透过率均优于其它温度的样品,并最终在该温度下制备出Φ7 ×0.5 mm2的单晶金刚石窗口.经测试,样品生长速率可达11.6 μm/h,厚度偏差小于±2;,其Raman半峰宽为2.08 cm-1,XRD摇摆曲线半峰宽为28arcsec,PL谱中未出现与氮相关的杂质峰,X射线透过率超过80;且窗口耐压达到27 MPa,所有性能均满足小角散射原位加载测试的应用需求.  相似文献   

4.
采用Bridgman-Stockbarger法生长出直径为210mm的氟化钙晶体。透过率在紫外200nm处接近80%,红外透过率良好,可使用到9μm。通过对原有生长设备的改进,采用更为先进的温控设备和合理的温场控制条件,使生长区温场径向梯度小于0.5℃/mm,轴向生长温度梯度2~3℃/mm。整个生长过程分为:升温化料、熔体均一化、下降坩埚生长和初步退火过程,初退火温度为950℃,退火降温速率为15℃/h。  相似文献   

5.
椭球谐振腔式MPCVD装置高功率下大面积金刚石膜的沉积   总被引:1,自引:0,他引:1  
使用自行研制的椭球谐振腔式MPCVD装置,以H2-CH4为气源,在输入功率为9 kW,沉积压力为1.7 ×104 Pa和不同的气体流量条件下制备了金刚石膜.利用扫描电镜、激光拉曼谱对金刚石膜的表面和断口形貌、金刚石膜的品质等进行了表征.实验结果表明,利用椭球谐振腔式MPCVD装置能够在较高的功率下进行大面积金刚石膜的沉积;在高功率条件下,较高质量的金刚石膜的沉积速率可以达到4 ~5 μm·h-1的水平,而气体的流量则会显著影响金刚石膜的品质及其沉积速率.  相似文献   

6.
采用垂直无籽晶气相升华法生长出直径37 mm的优质硒化镉(CdSe)单晶体,并沿光轴方向切割出20 mm×20 mm×3 mm的CdSe波片初胚.经研磨和抛光,在2~20μm波段CdSe波片的红外透过率约为70;.为进一步提高波片的透过率,采用Essential-Macleod软件辅助设计方案,选用YF3和ZnS为双层增透膜材料,并获得最佳的膜系厚度.镀膜后的CdSe波片在6~12μm波段透过率达到90;,在10.5μm处的透过率最高,峰值高达99;.  相似文献   

7.
采用微波等离子体化学气相沉积法在直径1~5mm硬质合金球体上沉积了5~20 μm厚的纳米金刚石膜.通过扫描电子显微镜、原子力显微镜和拉曼光谱对样品的表面形貌、膜厚均匀性和成份进行了表征.沉积膜表面呈现纳米金刚石典型“菜花”结构,晶粒度为10~20 nm,膜厚均匀,表面粗糙度随沉积膜厚度增加而增大.采用纳米压痕仪测试沉积膜硬度和弹性模量,沉积膜硬度接近40 GPa,弹性模量约为500 GPa.  相似文献   

8.
大面积球面金刚石膜的均匀沉积研究   总被引:1,自引:0,他引:1  
利用直流电弧等离子体喷射法沉积装置在底径65 mm、高5 mm的Mo球面衬底上制备出厚度大于500 μm金刚石膜.用千分尺测量膜径向厚度以判断膜厚均匀性,用SEM观察膜的表面形貌,用拉曼谱仪测量膜的表面纯度,通过分析电镜形貌和拉曼谱峰的分布特点来判断金刚石膜的质量均匀性.结果表明,在优化工艺条件下,直流电弧等离子体喷射法设备可以在球面Mo衬底上生长出厚度和质量都比较均匀的半透光的自支撑球面金刚石厚膜.  相似文献   

9.
赵晟  贺建雄  姜宏 《人工晶体学报》2017,46(12):2509-2513
采用溶胶-凝胶法,在3 mm厚的普白玻璃含锡面镀制镶嵌Ag纳米粒子的氧化硅薄膜,达到吸收蓝光的效果,在其非锡面镀制纤锌矿结构的氧化锌薄膜,达到阻隔紫外效果.通过双膜层的相互作用,达到对紫外和短波蓝光有效阻隔吸收,从而获得具有紫外蓝光防护及润眼功能的镀膜玻璃.研究了热处理温度和膜层厚度对近紫外和蓝光阻隔率的影响.结果表明:随着退火温度的升高,膜层更加致密,且退火温度越高,蓝光的吸收率也逐渐提高,吸收峰位红移.利用浮法玻璃本体的富锡表面还原AgNO3成Ag纳米粒子分散镶嵌在氧化硅薄膜的结构,能有效吸收380~450 nm的短波蓝光.实验样品呈现出美观的淡金黄色,且随着膜厚的增大,金黄色程度逐渐加深.以样品a为例,所制备的氧化锌膜层为稳定的纤锌矿结构,膜厚为438 nm,表面为球状颗粒,对380 nm以下的紫外光阻隔率为98.83;;所制备氧化硅薄膜厚为200 nm,表面致密,对380~450 nm的蓝光阻隔率为90.73;,样品整体450~780 nm可见光透过率为77.8;.  相似文献   

10.
纳米金刚石兼具纳米材料和金刚石的双重特性,呈现出与微米金刚石、块体金刚石截然不同的特点。本文以不同尺寸金刚石样品为研究对象,采用扫描电镜、X射线衍射、光谱学、热重分析技术对其结构、光学性能和热稳定性进行研究。结果显示样品尺寸分别为300 μm、30 μm和100 nm,大尺寸样品结晶质量较好,富含孤氮杂质,为Ⅰb型金刚石。纳米金刚石样品结晶较差,含有少量石墨残留,并含有H2O、N—H和C—H键,说明其表面存在诸多有机活性基团。大尺寸金刚石样品存在中性和带负电荷的氮空位缺陷,产生较强荧光,而纳米金刚石由于存在诸多的有机基团和表面缺陷,形成非辐射中心,导致荧光猝灭。大尺寸样品在300~525 nm具有较强吸收,而纳米金刚石样品在紫外-可见-近红外整个区域均呈现出较强吸收,透过率显著较低。随着颗粒尺寸的减小,金刚石的起始氧化温度逐渐下降,氧化速率降低,因此大颗粒尺寸金刚石样品具有更好的热稳定性。  相似文献   

11.
高温高压条件下,通过在Fe64Ni36-C合成体系中添加含氮化合物Ba(N3)2和羰基镍粉(carbonyl nickel)两种方式分别合成了高氮浓度金刚石大单晶.使用傅立叶红外光谱测试(FTIR)分别对所合成的金刚石大单晶进行了测试.对金刚石大单晶样品中氮的存在形式行了分析,并对晶体中的氮浓度进行了定量计算,进而对高氮浓度金刚石大单晶中A心氮原子对的形成机理进行了讨论.  相似文献   

12.
过渡金属轻元素化合物(TMLEs)由于具备高硬度,高熔点,优异电学、磁学、超导等性质受到广泛关注,是一类 具有优异力学性能的功能性材料。优异力学性能与功能性的结合使TMLEs成为极端环境下使用的特种材料。然而, TMLEs的制备往往需要高温高压(HPHT)极端实验条件来克服能垒。目前,已经有了大量HPHT制备TMLEs的报道, 然而,多数只关注产物的性质,对在HPHT下TMLEs的生长机制报道较少。因此,总结HPHT制备的TMLEs,分析TMLEs的晶体生长过程,对理解TMLEs的晶体生长机理、探究新型 TMLEs的制备具有重要意义。结合本课题组研究 经验及其他相关文献,总结了HPHT方法制备的过渡金属硼化物(TMBs)、碳化物(TMCs)和氮化物(TMNs)的晶体生 长情况,分别从起始原料、温压条件、晶体形貌等方面分析了TMLEs的生长机制。总结如下:通过原料配比和温度控 制是制备TMBs单一相的关键,提出硼亚结构单元是使TMBs形成台阶式生长模式的本质因素,碳源和氮源的选择决 定了 TMCs和TMNs的生长机制。同时提出,缺少利用HPHT制备TMLEs毫米级单晶的报道,限制了TMLEs部分本 征的性质探究;并且,新型高轻元素含量的TMLEs结构依然有待开发。随着人类对材料的要求越来越苛刻,以及TMLEs的不断发展,TMLEs将在未来特种材料领域具有不可替代的地位。  相似文献   

13.
本文报道了采用高压射频等离子体增强化学气相沉积(RF-PECVD)方法制备高电导、高晶化率的p型微晶硅材料的结果.重点研究了反应压力和辉光功率对p型微晶硅材料结构和电学特性的影响.通过沉积参数的优化,在很薄的厚度(33nm)时,材料的暗电导率依然达到1.81S/cm,激活能达25meV,晶化率为57;.文中还对高压RF-PECVD能够制备p型微晶硅材料的生长机理和高电导机理进行了分析.  相似文献   

14.
在1.0~3.0GPa,673~973K和10(-1)~10(6)Hz条件下,利用交流阻抗谱实验技术,首次对微斜长石[K(0.73)Na(0.16)Ca(0.09)(0.98)AlTi(0.01),Si(2.99)O8]电导率进行原位测量.实验结果表明:样品的复阻抗的模和相角对频率有很强的依赖性;样品电导率随着温度升高而增大,电导率的对数和温度的倒数之间关系符合Arrhenius线性关系;微斜长石电导率随着压力升高而降低,而活化焓随之增加;离子导电机制对高温高压下微斜长石的导电行为给予了合理的解释.  相似文献   

15.
本文利用激光共聚焦显微拉曼光谱仪表征了高温高压法合成的氮掺杂金刚石,并分析了该晶体的光致发光特性.结果表明,金刚石晶体内部含氮量比晶体表面高,且由于氮原子尺寸较大,使得晶体内部应力较高,晶化程度弱化;另外,氮掺杂金刚石的光致发光主要以氮-空位(NV)复合缺陷为主;氮含量高的区域,NV缺陷发光增强,且NV-/NV0强度比也增强.这是因为氮作为施主原子,有利于负电荷缺陷即NV-中心的形成;同时氮含量升高,也会使得费米能级向NV-中心的基态靠近,这也造成了NV-/NV0强度比随氮含量增加而增强.  相似文献   

16.
微波等离子体化学气相沉积(MPCVD)技术被认为是制备大尺寸高品质单晶金刚石的理想手段之一.然而其较低的生长速率(~10μm/h)以及较高的缺陷密度(103~107 cm-2)是阻碍MPCVD单晶金刚石应用的主要因素,经过国内外研究团队数十年的不懈努力,在高速率生长和高品质生长两个方面都取得了众多成果.但是除此之外还需解决高速率与高品质生长相统一的问题,才能实现MPCVD单晶金刚石的高端应用价值.  相似文献   

17.
在压力6.5 GPa、温度1290~1350℃实验条件下,研究了合成体系中分别添加单质硼、六角氮化硼(h-BN)时金刚石的合成.由于合成体系中添加剂的存在,导致所合成的金刚石颜色发生了明显的改变.傅里叶显微红外光谱(FTIR)测试表明,当合成体系中h-BN添加量较少时,所合成金刚石中含有替代式的氮杂质,且金刚石中有sp2杂化的硼-氮、硼-氮-硼结构存在.当合成体系中h-BN添加量达到2 wt;时,金刚石中的氮仅以硼-氮-硼的结构存在.此外,霍尔效应测试结果表明,硼掺杂金刚石具有p型半导体特性,而合成体系中添加h-BN所制备的金刚石表现为绝缘体.  相似文献   

18.
电导率测量的过程历经了从直流一交流一阻抗谱的过程,已经为地球物理学家借助于高温高压手段研究固体深部物质电学性质所广泛认同的.本文首先介绍了阻抗谱法测定水晶电导率的实验原理,进而采用该方法在10-1~106Hz的频率范围以及1.0~4.0GPa和823~1073K条件下,借助于YJ-3000t紧装式六面顶高压设备对沿Z轴方向生长的水晶进行了的电导率实验就位测量.实验结果表明:在选择的频率范围,样品的复阻抗的模和相角都对频率具有很强的依赖性;随着温度的升高,电阻迅速降低,电阻率降低,电导率增大;在压力1.0~4.0GPa,其活化焓分别为:0.8548eV、0.8320eV、0.8172eV、0.7834eV,独立于温度的指前因子分别为:1.003S/m、1.778S/m、3.082S/m、6.987S/m,活化焓随着压力的升高而降低,指前因子随着压力的升高而增大.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号