首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
以硅酸铝和硅酸钠为原料制备出玻璃料,利用高温高压法确定了白色硬玉质翡翠的最佳合成条件,并通过XRD、FTIR和SEM等方法对样品进行表征.结果表明:5.0 GPa、1450℃条件下合成样品的主要成分为NaAlSi2 O6,分子结构为硅氧四面体结构,具有柱状纤维编织形貌,与天然硬玉结构相同.我们的研究对于揭示天然翡翠的形成机制提供有力的参考.  相似文献   

2.
采用热压烧结法对块状菱镁矿进行煅烧,研究了温度为1400 ℃,压力P分别为1 MPa、5 MPa和9 MPa,热压时间为2h条件下煅烧后试样的结晶度.结果表明,压力P=1 MPa时,方镁石晶粒间间隙较大,液相分布不均匀,晶粒各个方向晶界移动速率不均匀,晶粒多为半自形晶,结晶程度较差;压力P=5 MPa时,方镁石晶粒紧密排布,液相分布均匀,晶粒的结晶度最高,晶粒发育最好;压力P=9 MPa时,试样组织结构产生应力和应变,晶粒发生形变、损毁和晶面断裂,试样中方镁石晶粒结晶程度最低,晶粒发育最差.  相似文献   

3.
以( NH4) 2Fe( SO4)2·6H2O和NaWO4·2H2O为起始原料,水热合成了FeWO4微晶.采用X射线衍射(XRD)以及透射电镜(TEM)对制备的微晶进行了测试和表征.结果表明,在水热温度110℃,24h条件下即可制备出单一物相的FeWO4微晶.随着水热时间的延长和水热温度的增加,产物由针状变为粒状结构,并且产物的结晶性能有所提高,晶粒尺寸逐渐增大.动力学研究表明,FeWO4微晶粒生长符合Brook关系,计算得到晶粒生长活化能为Ea=17.36 kJ/mol.  相似文献   

4.
在碱性条件下([NaOH] =0.008 mol/mL),以氯化钡(BaCl2·2H2O)和氧氯化锆(ZrOCl2·8H2O)为原料,采用传统水热法在低温下制备了锆酸钡(BaZrO3)微晶.利用XRD和SEM分别对产物进行了物相组成及微晶形貌的测试与表征.研究了反应温度为135℃时不同反应时间对产物微观结构及形貌变化的影响.结果表明:在135℃下反应2h即可合成纯相的BaZrO3粉体,且随着水热温度的升高,产物由无定形态变为类球状结构最终变为棱角分明的菱形十二面体结构,结晶程度提高,晶粒尺寸增大.通过对其结晶动力学研究,计算得到BagrO3微晶的表观成核活化能为24.36 kJ/mol.  相似文献   

5.
在压力4.5 ~5.3 GPa,温度1350 ~ 1500℃条件下,分别以不同粒度的Li3N粉末作为触媒,采用高温高压触媒法合成了立方氮化硼(cBN)单晶.研究了Li3N触媒粒度对cBN单晶合成效果的影响,对得到的cBN单晶的产量、转化率、大晶粒含量和抗压强度等待性进行了检测对比.结果表明,当Li3N触媒的粒度为80~ 100 μm时,在高温高压下可以合成出大晶粒含量高、抗压强度高、生长完善且晶形完整度较高的cBN单晶;当Li3N触媒的粒度为60~ 80 μm时,在高温高压下合成出的cBN单晶产量和转化率较高.  相似文献   

6.
以(NH4)2Fe(SO4)2.6H2O和Na2WO4.2H2O为起始原料,水热合成了FeWO4微晶。采用X射线衍射(XRD)以及透射电镜(TEM)对制备的微晶进行了测试和表征。结果表明,在水热温度110℃,24 h条件下即可制备出单一物相的FeWO4微晶。随着水热时间的延长和水热温度的增加,产物由针状变为粒状结构,并且产物的结晶性能有所提高,晶粒尺寸逐渐增大。动力学研究表明,FeWO4微晶粒生长符合Brook关系,计算得到晶粒生长活化能为Ea=17.36 kJ/mol。  相似文献   

7.
采用射频磁控溅射法架构了Cu(50 nm)/Nb-Ni(50 nm)/Si异质结,利用四探针电阻测试仪、X射线衍射仪和原子力显微镜等研究了样品在不同温度下高真空退火后的结构及输运性质.结果表明:经退火处理后的样品的方块电阻均小于常温下样品的方块电阻;X射线衍射图谱中,各个退火温度下均没有Nb-Ni结晶峰和其它杂峰出现;在AFM图像中,随着退火温度的上升,样品表面的粗糙度逐渐增加,晶粒的尺寸也在逐渐增大,直到当退火温度达到750℃左右,样品表面布满了岛状晶粒进而导致阻挡层失效.  相似文献   

8.
采用高温电炉对块状菱镁矿进行煅烧,研究了块状菱镁矿烧结末期(1600~ 1800℃)方镁石晶粒长大和致密化行为.结果表明:在烧结末期,随着温度升高,晶界快速移动,气孔“汇聚-排除”的速率和晶界向曲率中心的移动的速率增加,致使颗粒致密化迅速,方镁石晶粒长大明显.温度在1600~1700℃期间,晶界扩散是控制烧结致密化的主导机制,晶粒生长活化能为1.382×103 kJ·mol-1,晶粒以结晶长大方式为主;温度在1700 ~ 1800℃期间,体积扩散是控制烧结致密化的主导机制,晶粒生长活化能为1.164×103 kJ·mol-1,晶粒以聚晶长大方式为主.随温度的升高,晶粒长大活化能逐渐减小,晶粒长大速率增加.  相似文献   

9.
利用微波辅助水热合成法直接制备了纳米HZSM-5晶体.采用XRD、FT-IR、SEM、BET和NH3-TPD等手段对合成样品进行了分析表征,研究了晶化温度和时间对合成产物晶体性质的影响.结果表明,晶化温度和时间对微波辅助水热直接合成产物微观形貌、晶粒尺寸和分散度影响明显.较低的晶化温度和较短的晶化时间均难以形成形貌规则的HZSM-5晶体.随着晶化温度的升高,合成样品逐渐变为球形晶粒、晶粒尺寸逐渐增大、分散度逐渐提高,继续提高晶化温度达180 ℃时,晶粒长大使比表面积稍有降低;随着晶化时间的延长,样品的微孔和介孔增多,比表面积和孔容逐渐增大,继续延长晶化时间,晶体内微孔可能的收缩和晶粒的长大使得样品孔容和比表面积减小.160 ℃和1.5 h条件下制备的HZSM-5分子筛晶体形貌呈球形,晶粒尺寸约为60 nm,分散程度较好;其比表面积、孔容和平均孔径分别为398.45 m2·g-1、0.63 cm3·g-1和6.27 nm;晶体表面具有弱酸特征.  相似文献   

10.
采用溶胶-水热法,合成了具有单一钙钛矿结构的PbZr1-xTixO3反铁电陶瓷粉体,探讨了水热反应温度和反应时间对PZT粉体的结晶过程、晶体结构、微观形貌等的影响.实验发现,随着水热反应温度的升高或者水热反应时间的延长,溶胶-水热反应的产物由非晶态向晶态逐步过渡.当水热反应温度达到180 ℃,反应时间高于18 h时,合成了立方形貌、结晶良好且具有钙钛矿结构的PZT陶瓷粉体.继续升高水热反应温度或者延长水热反应时间,PZT陶瓷粉体XRD衍射峰的峰强增强,峰位不变.但进一步升高水热反应温度时,PZT粉体的粒径尺寸增加明显.而进一步延长水热反应时间,PZT陶瓷粉体的粒径尺寸略有增加.由此,实验确定,本研究中溶胶-水热法合成PZT反铁电陶瓷粉的最佳水热条件为:水热反应温度为180 ℃,反应时间为18 h.  相似文献   

11.
通过模拟天然翡翠的形成机理,对高温高压技术和玻璃料制取工艺的优化,以Na2SiO3·9H2O和Al2(SiO3)3为原料并添加少量致色剂CrO3,在超高压6.0 GPa下实现玻璃料由非晶态向晶态转化.通过XRD、FTIR和SEM等方法对样品进行表征,实验结果表明:6.0 GPa、1530℃条件下合成样品呈现翠绿色,质地温润,具有较高的润度和透明度;样品主要成分为NaAlSi2 O6,结晶度较高,分子结构为硅氧四面体结构,晶粒细密,致密有序;合成翡翠的硬度和密度等常规宝玉石参数也与天然翡翠接近,我们的研究对于探究翡翠在超高压下形成提供了数据参考.  相似文献   

12.
《Journal of Non》2001,279(2-3):186-195
The structures of GeS2 glasses permanently densified under 1.5, 3.0, 4.5, 6.0 and 9.0 GPa have been investigated by means of Ge–K EXAFS, Ge–K and S–K XANES, X-ray radial distribution, Raman scattering and optical absorption. The experimental results have been analyzed based on the structures of α (high-temperature form)-, β (low-temperature form)- and II (high-pressure form)-GeS2 crystals. The densities of permanently densified glasses increased monotonously with increasing applied-pressure until 6.0 GPa and then reached a constant value in a pressure range from 6.0 to 9.0 GPa. With increasing densification the structure of GeS2 glass, which is an intermediate between the structures of α-GeS2 and β-GeS2 at atmospheric pressure, was progressively converted into a II-GeS2-like structure with no large hollows. The red shift of optical absorption edge in the visible region that results from densification exhibited the same pressure dependence as that observed for density.  相似文献   

13.
Drastic effect of additional Mo on diamond nucleation was observed in the system of Mc60Cc40 (mixture of 60 mol% MgCO3 and 40 mol% CaCO3)–graphite at 7.7 GPa, 1700 and 1800°C for 1 h. The decrease of temperature required for nucleation of diamond by addition of Mo is 200°C, compared with the temperature in the system of Mc60Cc40–graphite (Sato et al., Diamond Related Mater. 8 (1999) 1900). These results indicate that a lower energy barrier is expected for the nucleation in the Mc60Cc40–Mo–graphite system. Therefore, this nucleation process in the system of Mc60Cc40–graphite–Mo can be considered to be different from the spontaneous nucleation in the system of Mc60Cc40–graphite. Two probable models for nucleation can be suggested: (1) heterogeneous nucleation in which nucleation is affected by MoC that is formed by the reaction between the carbonate and Mo and (2) achievement of enough concentration of carbon for formation of nuclei by the reaction between the carbonate and Mo.  相似文献   

14.
15.
An increase in the NaOH concentration in the NaOH-TiO2 (rutile)-H2O system at a temperature of 500°C and a pressure of 0.1 GPa leads to the crystallization R-TiO2 + Na2Ti6O13 → Na2Ti3O7 → Na16Ti10O28. Crystals of the Na2Ti6O13 titanate (space group C2/m) have the three-dimensional framework structure Ti6O13. The structure of the Na2Ti3O7 titanate (space group P2 1/m) contains the two-dimensional layers Ti3O7. The structure of the Na16Ti10O28 titanate (space group P-1) is composed of the isolated ten-polyhedron cluster precursors Ti10O28. In all the structures, the titanium atoms have an octahedral coordination (MTiO6). The matrix self-assembly of the Na2Ti6O13 and Na2Ti3O7 (Na4Ti6O14) crystal structures from Na4 M 12 invariant precursors is modeled. These precursors are clusters consisting of twelve M polyhedra linked through the edges. It is demonstrated that the structurally rigid precursors Na4 M 12 control all processes of the subsequent evolution of the crystal-forming titanate clusters. The specific features of the self-assembly of the Na2Ti3O7 structure that result from the additional incorporation of twice the number of sodium atoms into the composition of the high-level clusters are considered.  相似文献   

16.
Triethyl ammonium Salt of O,O′-bis(p-tolyl)dithiophosphate and O,O′-bis(m-tolyl)dithiophosphate have been obtained by reaction of p- and m-cresol, respectively with P2S5 in toluene and have been characterized by elemental analysis, IR, 1H and 31P NMR spectroscopy. The molecular structure of O,O′-bis(p-tolyl)dithiophosphate has been determined. Crystal data: [Et3NH]+[(4-MeC6H4O)2PS2]: Monoclinic, P21/c, a=15.2441(9) ?, b=10.415(2) ?, c=3.9726(9) ?, β=91.709(7)°, V=2217.5(1) ?−3, Z=4.Supplementary materials Additional material available from the Cambridge Crystallographic Data Centre (CCDC no. 600927 for [Et3NH]+[(4-MeC6H4O)2PS2] comprises the final atomic coordinates for all atoms, thermal parameters, and a complete listing of bond distances and angles. Copies of this information may be obtained free of charge on application to The Director, 12 Union Road, Cambridge CB2 2EZ, UK (fax: +44-1223-336033; email: deposit@ccdc.cam.ac.uk or www:http://www.ccdc.cam.ac.uk).  相似文献   

17.
The structure of Zn4Na(OH)6SO4Cl·6H2O, a secondary mineral from Hettstedt, Germany, was determined by single-crystal X-ray diffraction. The crystals are hexagonal,a=8.413(8),c=13.095(24) Å, space group $P\bar 3$ , Z=2. The structure was refined to R=0.0554 and Rw=0.0903 for 970 reflections with I≥3σ(I). The structure can be described as zinc hydroxide layers perpendicular toc, from which sulfates and chlorides extend. The layers are held together by a system of hydrogen bonds involving hexaaquo Na+ ions which occupy the interlayer space.  相似文献   

18.
Abstract  The title compound, C18H18BrN3O3S, a derivative of 1,3,4-oxadiazole, crystallizes in the triclinic space group P-1 with unit cell parameters a = 6.8731(3), b = 8.9994(4), c = 15.7099(6) ?, α = 92.779(3)°, β = 130.575(3)°, γ = 107.868(4)°, Z = 2. The dihedral angle between the mean planes of the planar naphthyl and morpholine (chair) rings with the planar oxadiazol ring is 50.1(8) and 76.8(6)°, respectively. The planar naphthyl ring is twisted 52.2(5)° with the mean plane of the morpholine ring. A group of four intermolecular close contacts are observed between a bromine atom and hydrogen atoms from the closely packed naphthyl, morpholine and oxy–methyl groups in the unit cell. These molecular interactions in concert with an additional series of π–π stacking interactions that occur between the center of gravity of the two 6-membered rings of the naphthalene group influence the twist angles of each of these three groups. A MOPAC AM1 calculation of the conformation energy of the crystal structure [226.0128(9) kcal] compared to that of the minimum energy structure after geometry optimization [29.9744(1) kcal] reveals a significantly reduced value. The twist angles of the three groups above also change after the AM1 calculation giving support to the influence of both intermolecular C–H···Br short-range interactions and Cg π–π stacking interactions on these angles which therefore play a role in stabilizing crystal packing. Graphical Abstract  Crystal structure of 5-{[(6-bromonaphthalen-2-yl)oxy]methyl}-3-(morpholin-4-ylmethyl)-1,3,4-oxadiazole-2(3H)-thione, C18H18BrN3O3S, is reported and its geometric and packing parameters described and compared to a MOPAC computational calculation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Irisolidone (5,7-dihydroxy-6,4′-dimethoxyisoflavone) was isolated from the flowers of Pueraia lobata and its crystal structure was examined by X-ray single crystal diffraction. The crystal structure of irisolidone is monoclinic, space group P21/c with a = 15.491(9) ?, b = 7.895(4) ?, c = 13.321(7) ?, β = 110.546(9)° and Z = 4. Hydrogen bonding and aromatic ππ stacking assemble the title compound into a three-dimensional networking structure.  相似文献   

20.
The natural amino acid L-Spinacine (4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid) has been synthesized following a new pathway which gives a chemically and optically pure product with an excellent yield. The crystal structures of a synthetic intermediate, Nπ-hydroxymethyl-spinacine, and a spinacine derivative, Nα-methyl-spinaceamine, have been investigated through X-ray diffraction: Spi(πMeOH)·H2O, monoclinicP2 i,a=8.571(1),b=6.682(1),c=8.588(1) Å, and β=94.67(1)o. Spm(αMe)·2HCl·H2O, triclinicP l,a=7.492(4),b=10.799(3),c=7.040(2) Å, α=91.88(2), β=98.36(3) and γ=73.34(3)o. Spi(πMeOH) crystallizes with a water molecule and displays a zwitterionic character. The carboxylate group is in equatorial position and forms a short electrostatic interaction of 2.618(2) Å between one of its oxygens and the protonated nitrogen of the tetrahydropyridine ring. The crystal packing is assured by strong O?H???O, O?H???N, N?H???N intermolecular hydrogen bonds and C?H???O close contacts. The biprotonated compounds Spm(αMe) crystallizes with two Cl? anions and a water molecule. The positive charge on the imidazole ring is delocalized on the conjugated moiety N=C?N. The crystal is built up by clusters formed by two biprotonated Spm(αMe) molecules, four Cl? anions and two water molecules linked together by hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号