共查询到19条相似文献,搜索用时 61 毫秒
1.
以高岭土、氢氧化铝为原料,淀粉为造孔剂和粘结剂,Y2O3为烧结助剂,采用冷冻干燥法结合淀粉固化工艺制备了具有连通开孔结构的莫来石多孔陶瓷.研究了淀粉添加量对浆料前驱体的流变性能、多孔陶瓷的气孔率、孔径分布、显微结构以及力学性能的影响.结果表明:当淀粉含量由15.84vol;增至20.59vol;,浆料前驱体的粘度增加明显;随着剪切速率的增加,浆料前驱体的粘度先显著降低然后趋于稳定,表现为剪切稀化行为.随着淀粉含量的增加,所得多孔陶瓷的孔径尺寸减小,孔径分布趋于均匀,从双峰分布向单峰变化,孔隙率缓慢增加,维持在61.5;~66.2;范围内,当淀粉含量增加到15.84vol;时,抗压强度达到最高值9.5 MPa,孔隙率也达到65.7;.但当淀粉含量进一步增加后,抗压强度有下降的趋势. 相似文献
2.
冷冻干燥技术是一种很有特色的制取多孔材料的新技术,尤其是该技术所制备的多孔陶瓷所呈现出独特的微观结构和优良的生物性能,引起了各国学者广泛关注,成为当前多孔陶瓷材料制备的一个研究热点.本篇论文将简述冷冻干燥技术的原理,并分析冷冻媒介对冷冻干燥技术制备多孔陶瓷形貌及性能的影响,为冷冻干燥技术制备多孔陶瓷材料提供理论参考. 相似文献
3.
4.
以普通建筑陶瓷坯料为原料、天然植物胶为凝胶剂,通过凝胶注模工艺研制了吸声多孔陶瓷.研究了多孔陶瓷的显微结构以及多孔陶瓷的显气孔率、孔径和厚度对吸声性能的影响.结果表明:延长浆料搅拌时间可提高试样的显气孔率,而较大的显气孔率使吸声曲线的吸声峰向高频方向偏移,吸声峰值呈现先增加后降低的趋势;适当增加浆料固含量可减小孔径,孔径变小导致试样吸声峰向低频方向缓慢偏移,吸声峰值提高;增加厚度有利于试样吸声峰向低频方向偏移,而不同频率范围内吸声系数变化趋势不同. 相似文献
5.
以高纯石英粉、氧化铝粉以及玻璃粉作为主要原料,首先通过颗粒稳定泡沫法结合离心雾化干燥装置制备得到SiO2-Al2O3陶瓷微珠,然后将其紧密堆积于坩埚中,随后经1500 ℃下直接堆积烧结1 h,利用空心微珠高温下自发泡,成功制备孔分布均匀的多孔莫来石陶瓷.研究了SiO2-Al2O3陶瓷微珠中高纯石英粉、氧化铝粉和玻璃粉组成对多孔莫来石陶瓷性能的影响.该方法简便易行,可控性强.通过该方法可制得气孔率高达85.4;,抗压强度为(3.69±0.86) MPa,低介电常数为1.70的多孔莫来石陶瓷,有望应用于透波材料领域. 相似文献
6.
本文利用无机胶凝材料成功制备了莫来石多孔陶瓷.以硅藻土和ρ-Al2O3为原料,AlF3和MoO3为添加剂,利用ρ-Al2O3遇水硬化的特点,来实现陶瓷浆料的固化成型,再将成型后的陶瓷生坯经高温烧结得到莫来石多孔陶瓷.该方法绿色环保,整个制备过程中无有机物的排放.通过使用XRD、SEM等表征测试手段,研究了烧结温度对莫来石多孔陶瓷的相组成、微观形貌、线收缩率、开孔孔隙率以及抗压强度的影响.实验结果表明,制备的莫来石多孔陶瓷由生长良好的莫来石晶须构成,在1500℃下烧结的莫来石多孔陶瓷孔隙率可达到82.3;. 相似文献
7.
采用硅树脂RSN-6018为陶瓷先驱体,并引入一定比例的预固化硅树脂,在N2气氛下于1200 ℃裂解转化制备组分单一、孔结构可控以及陶瓷产率高的硅氧碳(Si-O-C)多孔陶瓷,研究了预固化硅树脂含量对Si-O-C多孔陶瓷微观形貌和性能的影响.结果表明:预固化硅树脂的加入可有效调节Si-O-C多孔陶瓷的孔形貌、孔径以及气孔率,当预固化硅树脂含量低于90wt;时,随着预固化硅树脂含量的增加,孔结构从贯通圆孔变为颗粒"搭接"贯通孔,再变为颗粒堆积孔,且气孔率增大;而体积收缩减小,陶瓷产率提高;耐压强度在27.9~17.5 MPa之间. 相似文献
8.
9.
本文以镁渣,粉煤灰等为原料制备了镁渣基多孔陶瓷,评价了多孔陶瓷的孔隙参数,烧结性能,力学性能,渗透性能等,观察了多孔陶瓷的微观结构,研究了烧结温度、成型压力、原料配比和添加剂等因素等对多孔陶瓷理化性能的影响.结果表明,烧结温度1150℃,保温4 h可制得固废掺比为90;的镁渣基多孔陶瓷,成型压力对多孔陶瓷的气孔率、吸水率和体积密度具有较大影响.镁渣和粉煤灰的配比为7:2时,多孔陶瓷产品的综合性能较好.添加电石渣和碳粉为造孔剂能够匀化气孔分布,细化孔径,提高多孔陶瓷的气孔率和气体过滤性能. 相似文献
10.
以α-氮化硅粉为原料,坎烯为溶剂,氧化钇和氧化铝为烧结助剂,室温下利用冷冻注模法制备出多孔氮化硅陶瓷.研究了固相含量(坎烯含量)、干燥方式及粘结剂对生坯性能的影响,以及对烧结制备出的氮化硅孔隙率、力学性能和微观结构的影响.研究结果表明:固相含量过低会导致升华后坯体强度过低而坍塌,过高则无法获得多孔结构.坯体置于真空环境下干燥能有效加快其升华速度,避免坯体开裂.选用聚苯乙烯(PS)作为粘结剂制备的生坯效果较好.通过烧结制备试样的主晶相为β-Si3 N4相,以莰烯为溶剂获得的氮化硅陶瓷展现出了内部联通的多孔结构,而且是树枝状的坎烯"手臂".烧成后试样的线收缩率随着固相含量的增加而减小,当固相含量由10vol;升高到25vol;时,试样的开气孔率由82.13;降低到62.09;,而密度却由0.5698 g/cm3升高到1.2603 g/cm3,相应的三点弯曲强度由3.933 MPa增加到14.421 MPa,硬度由393.5 kg·mm-2上升至1288.3 kg·mm-2. 相似文献
11.
使用叔丁醇(TBA)基凝胶-注模法制备莫来石多孔陶瓷材料,研究了不同干燥温度下坯体的失重、收缩以及最终的烧结.发现在较高的干燥温度下,坯体的失重较快,基本没有收缩,而在室温下干燥的坯体,失重较慢,具有较大的收缩.在高温下干燥的坯体,表层和内部水分的迁移速度不一,导致内部出现应力的不均匀,使得烧结后的材料出现较多的破碎.因此,使用叔丁醇基凝胶-注模法制备的多孔陶瓷材料坯体,初始低温干燥,后期高温干燥,可以得到长期保存并且烧结成功率较高的多孔陶瓷材料. 相似文献
12.
采用改进的凝胶-溶胶法制备了200~800 nm的单分散SiO2微球,并通过真空冷冻干燥法得到不易团聚的单分散SiO2粉体,采用乙醇超临界方法对制备的SiO2微球进行疏水改性.通过扫描电镜和氮吸附-脱附分析仪对SiO2微球的表面形貌、粒径以及孔径分布进行表征;用傅里叶红外变换测试和测量接触角对疏水改性的SiO2微球进行分析.结果表明SiO2微球粒径随二次加入TEOS体积增加呈先增大后减小.经过乙醇超临界处理,SiO2微球表面成功接枝上了疏水烷基,微球尺寸越小,疏水性越好,其接触角高达149°,单次SiO2微球处理量对结果无明显影响.采用本方法可以单次处理12 g以上的SiO2微球,接触角均在140°左右,可充分满足实验室使用需求.经过真空冷冻技术和乙醇超临界技术得到疏水单分散SiO2微球粉体,具有不易团聚及单分散性良好的优点,能够作为胶体晶体原料和三维有序材料(3-DOM)模板剂进行广泛应用. 相似文献
13.
采用复分解法制得纺锤形CaCO3,以正硅酸乙酯(TEOS)为硅源,通过溶胶-凝胶法对其进行SiO2包覆改性,制备出CaCO3/SiO2复合粒子.通过改变反应温度、氨水用量和TEOS用量,探究了包覆改性的最佳工艺条件.利用扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)、傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)对样品的形貌、结构、物相、化学组成和包覆性质进行了分析和表征.结果表明:当温度为45℃,氨水用量为10 mL,TEOS用量为3 mL时,制备的复合粒子耐酸性最好.SiO2包覆不会改变CaCO3形貌与结构.在包覆界面处,SiO2通过形成Ca-O-Si化学键包覆于CaCO3表面. 相似文献
14.
15.
以微米级α-Al2O3、陶瓷水体分散剂为主要原料,以La2O3-水洗高岭土为烧结助剂,采用冰模板法制备了一种具有高孔隙率和较高抗压强度的氧化铝/高岭土复合定向多孔陶瓷.研究了不同添加量的La2O3对多孔陶瓷的显气孔率、体积密度、抗压强度和微观形貌的影响.结果表明:添加适量的稀土La2O3能降低多孔陶瓷烧结温度、提高体积密度和抗压强度.通过高能机械球磨法添加La2O3,在1350℃烧结制备的多孔材料样品显气孔率为82;,样品的抗压强度达到10 MPa以上.当La2O3加入量达到3;时,可使多孔陶瓷抗压强度提高到15.2 MPa,较不掺加La2O3提高了约53;. 相似文献
16.
利用热蒸发法在N型硅片表面成功制备出大面积SiO2纳米线和SiO2纳米棒结构.采用X射线粉末衍射(XRD),扫描电子显微镜(SEM),X射线能量色散谱(EDX),拉曼光谱(RS)和光致发光(PL)对合成的产物进行了表征.结果表明,用此方法生长的SiO2纳米材料,其结构和形貌与生长参数关系密切,随着沉积温度降低纳米线长度变短,最后呈现出棒状结构.此外,还研究了SiO2纳米结构独特的光学性质.该研究对改善光电子半导体器件的性能应用具有重要意义. 相似文献
17.
电沉积法制备Bi2S3薄膜研究 总被引:1,自引:1,他引:0
采用阴极恒电压法在ITO导电玻璃表面沉积了Bi2S3薄膜,利用X射线衍射(XRD)、原子力显微镜(AFM)对制备的薄膜进行了表征.研究了pH值、沉积时间、沉积液浓度等工艺因素对薄膜的影响.结果表明:电沉积制备Bi2S3薄膜的过程中,合适的Bi3+与S2O32-的浓度水平是至关重要的;在电沉积溶液pH=6.5,沉积时间为20 min,沉积电压为1 V,加入柠檬酸三钠作络合剂的情况下,得到沿(240)晶面生长良好的Bi2S3薄膜,薄膜组成均匀致密;增加沉积溶液pH值,薄膜的结晶程度逐渐提高,红外透过比提高. 相似文献
18.
以正硅酸乙酯(TEOS)和Sr(NO3)2为原料,采用溶胶-凝胶法制备出高纯度的不规则形状硅酸锶粉体。利用X射线衍射仪、扫描电镜和差热-热重分析仪等研究了锶盐种类、水硅比和pH值对硅酸锶粉体的相结构、形貌和纯度的影响,探讨了溶胶-凝胶法制备硅酸锶粉体的反应过程与机理。结果表明:溶胶-凝胶法制备Sr2S iO4粉体的最佳工艺条件为:锶盐选择Sr(NO3)2,n(H2O)∶n(TEOS)∶n(EtOH)为24∶1∶5,pH值为3~4,煅烧温度为800℃。与传统高温固相反应法相比,该方法大幅度降低了煅烧温度,提高了粉体的纯度,同时能够减小最终获得的硅酸锶粉体粒径。 相似文献