首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
以高纯ZrB2粉末和ZrOCl2为原料,应用沉淀法制备了ZrO2包覆ZrB2复合粉体,并通过放电等离子烧结技术(SPS)得到高致密度的ZrB2/ZrO2复合材料.采用TEM、SEM、XRD对粉体及其烧结体进行测试,并对纯ZrB2粉体与包覆式复合粉体的烧结行为进行分析.研究结果表眀:利用沉淀法可以形成包裹结构;包覆式复合粉体的烧结性能大大优于纯ZrB2粉体,在1950℃的烧结温度下,保温10min,得到相对致密度97.8;的ZrB2/ZrO2复合材料.  相似文献   

2.
以ZrSiO4、Na2B4O7、Mg粉及C粉为原料,MgCl2为熔盐介质,采用熔盐法制备了ZrB2-ZrC-SiC复合粉体,研究了熔盐温度(900~1200℃)、原料配比对熔盐法合成ZrB2-ZrC-SiC复合粉体的物相组成及含量的影响.结果表明:当MgCl2∶反应物=4∶1(wt;),ZrSiO4∶Na2B4O7∶Mg∶C=2∶1∶18.2∶2(mol;)时,经1150℃反应3h所制备的复合粉体中ZrB2-ZrC-SiC的相对含量最高,约为78wt;.  相似文献   

3.
采用固态核磁共振(NMR)为主要研究手段,FT-IR,XRD等作为辅助方法对陶瓷前驱体高温裂解制备的SiBCN陶瓷的结构进行分析和表征.研究表明SiBCN陶瓷是非晶结构,并且SiBCN陶瓷结构中存在Si四面体结构,与非晶的氧化硅中硅氧四面体的结构相类似;SiBCN陶瓷前驱体中C-C键,Si-C键,Si-N键以及C-B-C键经过高温裂解后保留在SiBCN陶瓷结构中;SiBCN陶瓷中的硼原子与其它原子形成的是平面三角结构,但是前驱体向陶瓷转化过程中,由于季碳的产生,空间位阻增大,围绕中心碳发生了偏转以降低产生季碳造成的应力增大,这样的偏转改变了一部分硼的空间结构,使硼原子不在一个平面内而使化学位移发生改变.  相似文献   

4.
利用热压烧结(HP)和放电等离子烧结(SPS)制备了ZrB2陶瓷,研究了粉体粒径和烧结工艺对ZrB2陶瓷致密化行为和晶粒长大的影响.结果表明,相同工艺下以平均粒径为200 nm的ZrB2粉体为原料替代平均粒径为2μm的ZrB2粉体可以明显促进粉体的致密化烧结,采用SPS替代HP工艺可以显著降低粉体的致密化温度,采用平均粒径为200 nm的ZrB2粉体在1900℃进行SPS工艺烧结即可实现ZrB2陶瓷的致密化烧结.  相似文献   

5.
本文通过在硅酸盐电解液中加入纳米TiO2添加剂,研究了在NaCl溶液中长时间浸泡后,ZL101A铸造铝合金微弧氧化陶瓷涂层的腐蚀行为.结果表明,微弧氧化涂层可以在一定程度上保护基体不被腐蚀,电解液中加入纳米TiO2添加剂后,不但填补部分疏松层的孔洞,也增加了致密层的厚度,有效阻挡了Cl-对基体的直接侵入.  相似文献   

6.
以20vol; ZrB2粗粉和细粉为导电相,以3vol; MgO-2vol; YB2O3烧结助剂,通过热压烧结在1500℃制备了Si13N4-ZrB2复相陶瓷,研究了ZrB2粒径对致密度、相组成、显微结构以及电阻率的影响.结果表明,不依赖于Zrl2粒径,通过引入MgO-YB2O3烧结助剂,均可以获得高致密Si3N4-ZrB2陶瓷.以Zrl2粗粉为原料时,Si3N4-ZrB2陶瓷包含主要的αt-Si3N4 、β-Si3N4和ZrB2相以及微弱的Yb4 Si2N2O7相,由于ZrB2晶粒保持孤立状态,样品电阻率较高,为9.5×103 Ω·m;而以ZrB2细粉为原料时,其与Si3N4发生轻微的高温反应,除了包含主要的d-Si3N4、β-Si3N4和ZrB2相及微弱的Yb4Si2N2O7相之外,Si3 N4-ZrB2陶瓷还含有新生成的微弱ZrSi2和ZrN导电相,由于ZrB2晶粒保持连通状态,样品电阻率显著降低,仅有6.8 Ω·m.  相似文献   

7.
采用两种不同素坯成型工艺制备层状C/ZrB2-SiC复合材料,并对其微观结构和力学性能进行研究.结果表明:高温下预压成型制备的层状ZrB2-SiC复合材料层厚均匀,界面平直,弯曲强度和断裂韧性较高,分别达到427MPa和11.3 MPa·m1/2.而室温下预压成型各层厚度不均,界面弯曲,出现界面交叉现象,弯曲强度和断裂韧性较低,分别为277 MPa和9.4 MPa·m1/2.采用素坯高温预压成型制备的层状C/ZrB2-SiC复合材料力学性能较高,主要归因于界面平直,裂纹交替通过基体层和界面层,裂纹的扩展路径变长,断裂功增加.  相似文献   

8.
以ZrB2、SiC粉体为原料,通过等离子活化烧结在1800℃,30 MPa,保温时间5 min条件下制得出组织结构均匀致密度的ZrB2-SiC陶瓷块体;采用磁控溅射在Nb箔表面镀微米级别的ZrC薄膜.然后将Nb箔与ZrB2-SiC叠层进行烧结.利用XRD检测了产物物相,采用SEM和能谱分析观测了断口显微结构和元素分布.结果表明,当Nb箔表面无ZrC薄膜或薄膜被破坏后,产物中基本不存在单质Nb.当Nb箔表面保持有完整ZrC薄膜时,Nb金属相可以大量保留下来.当烧结温度低于1500℃时,ZrC薄膜可以有效阻止铌箔的与ZrB2、SiC的反应.镀有ZrC薄膜的Nb箔做中间层与ZrB2/SiC叠层材料的断裂韧性有明显提高,断裂韧性达到了9.66 MPa·m1/2.  相似文献   

9.
采用放电等离子烧结和热压烧结制备了短切碳纤维(Csf)增韧ZrB2-SiC超高温陶瓷复合材料(ZrB2-SiC-Csf),研究了制备工艺对ZrB2-SiC-Csf复合材料微结构演变、力学性能和抗热冲击性能的影响.结果表明:烧结温度是导致碳纤维结构损伤的主要因素,降低烧结温度能有效抑制碳纤维的结构损伤.采用纳米ZrB2粉体在1450 ℃低温热压烧结制备的ZrB2-SiC-Csf复合材料在断裂过程中表现出纤维拔出、纤维侨联和裂纹偏转增韧机制,其临界热冲击温差高达741 ℃,表现出良好的力学性能和优异的抗热冲击性能.从热力学的角度阐明了ZrB2-SiC-Csf复合材料中碳纤维结构损伤的机理,并揭示了该类材料的烧结温度应低于1500 ℃.  相似文献   

10.
采用聚硅氮烷前驱体作为基体,添加惰性填料(YSZ)和活性填料(TiSi2)制备涂层浆料,在310s不锈钢表面利用前驱体转化法制备TiSi2/YSZ陶瓷涂层.通过TGA、XRD和SEM对涂层的物相组成和微观形貌进行了表征,并研究了TiSi2含量对涂层的隔热性能以及耐高温性能的影响.结果表明,所制备的涂层厚度在15~35μm之间,由于前驱体树脂裂解过程中的体积收缩,未添加TiSi2的涂层表面分布有大量裂纹且涂层部分脱落.裂解过程中,TiSi2氧化生成TiO2与SiO2后可使TiSi2体积膨胀,弥补了前驱体树脂的体积收缩.因此随着TiSi2含量的增加,涂层脱落面积减少,表面裂纹密度降低,当TiSi2的体积分数达41;时,涂层内部无裂纹产生,该涂层样品在1200℃氧化25 h后金属基底氧化增重降低88.8;,并表现出良好的隔热性能和抗热震性能.  相似文献   

11.
用低温原位合成技术制备了Al2O3-ZrO2-YAG复相粉末,在1100℃,5h热处理后,Al-Zr-Y-O体系中的主相为ZrO2四方相,其余为无定形相,表明ZrO2抑制了Al2O3和YAG晶粒的生长,同时Al2O3和YAG抑制了ZrO2从四方相向单斜相的转变.在1580℃,1h热处理后,Al-Zr-Y-O体系中的复相组成为(115+90x)Al2O3+54(Y2O3)x·ZrO2+(32-36x)YAG,其中0 ≤x<0.88(mol).  相似文献   

12.
采用聚碳硅烷(PCS)和纳米ZrB2粉体为原料在不同温度下热压烧结制备了ZrB2-SiC超高温陶瓷,对比了PCS和颗粒状SiC的引入对ZrB2陶瓷微结构和力学性能的影响.结果表明:通过PCS替代颗粒状SiC制备ZrB2-SiC超高温陶瓷可以形成SiC均匀包覆基体ZrB2晶粒的微观结构,明显促进了材料的低温致密化并抑制了晶粒长大.但力学性能略有降低,其原因可能是PCS裂解产生的微量碳遗留在基体ZrB2的晶界处,弱化了晶界结合强度.本文验证了采用PCS和纳米ZrB2粉体进行热压烧结是实现ZrB2-SiC超高温陶瓷低温致密化的有效手段.  相似文献   

13.
本文在Al2O3基片上通过丝网印刷方法涂覆Al浆料夹层材料,然后在750 ℃进行热处理后制备多层陶瓷.观察了用Al浆料制备的条状试样在25~800 ℃热处理过程中的变化,分析了Al浆料的性质,并对25 ℃风干的Al浆料及650 ℃、750 ℃热处理后的Al浆料进行了XRD分析.此外,专门设计试验,测试了Al浆料的粘结强度,和AB胶、502胶粘结强度进行了对比.在先前的工作的基础上,对层状陶瓷材料的横切面进行了SEM分析,并对层状陶瓷的断裂裂纹扩展方式进行了观察研究.  相似文献   

14.
金属Fe纳米粒子,易氧化和团聚,将其嵌入陶瓷基体中,可解决这个问题.本文以Al和Fe3O4为反应物,采用机械力化学法合成了纳米铁/氧化铝复合粉体.利用X射线衍射(XRD),结合透射电镜(TEM)分析了复合粉体的物相组成及纳米Fe的粒径.运用示差扫描量热法(DSC)、热重(TG)研究了在氩气和空气不同气氛、室温和高温不同温度下复合粉体的热稳定性.结果表明:复合粉体具有蛋糕-果仁形态,纳米Fe的粒径在20~80nm之间;复合粉体具有良好的抗氧化性.  相似文献   

15.
对无压烧结制备的AlN陶瓷氧化处理,采用传统Mo-Mn法在预氧化后的AlN陶瓷表面制备金属化层,并在Mo-Mn金属化层表面实施镀镍制备Mo-Mn/Ni复合金属化层.研究了AlN陶瓷氧化及金属化对其导热性能、力学性能、表面相组成及显微结构的影响.结果表明:氮化铝陶瓷经过1100 ℃保温3 h的氧化处理之后,在其表面生成均匀分布的氧化铝层,热导率和抗弯强度分别提升了6.2;和26.6;.AlN陶瓷表层制备的Mo-Mn/Ni复合金属化层厚度约为28 μm,Al2O3层、Mo-Mn层与Ni层之间通过元素的相互迁移形成扩散层,层间紧密结合.金属化后陶瓷的热扩散系数较纯AlN陶瓷基体提升3.8;.  相似文献   

16.
La-Mn共掺杂的钛酸钡陶瓷还原再氧化研究   总被引:1,自引:0,他引:1  
以MnO2为受主,La2O3为施主,采用传统高温固相法对钛酸钡陶瓷进行掺杂,并对还原气氛下烧结的样品分别在900 ℃和1000 ℃的温度下进行再氧化处理.采用XRD和电性能测试研究了镧锰共掺杂和再氧化工艺对于钛酸钡陶瓷阻温特性及微观结构的影响.结果表明:钛酸钡陶瓷的阻温特性与施主、受主的掺杂比例和烧结气氛有关;与在空气下烧结相比,在还原气氛下烧结能明显的提高施主掺杂的临界浓度,同时随着再氧化温度从900 ℃提高到1000 ℃,PTC效应明显增强.BaTiO3晶粒尺寸随着施主掺杂浓度的提高而变小.Mn离子的掺入使钛酸钡晶格结构更为紧密,阻碍了晶格内部氧离子向外部的扩散,导致了明显的PTC效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号