首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
以炭黑、不同锆源(二氧化锆、钙稳定氧化锆、氧氯化锆)为原料,金属镁粉为还原剂,在NaCl/KCl熔盐、氩气气氛中发生还原反应及锆碳反应,开展了碳化锆粉体的合成研究.通过X射线衍射仪、场发射扫描电镜、激光粒度仪及比表面积分析仪等测试手段对合成的碳化锆粉体进行了分析表征.结果表明:碳化锆合成过程先后经历ZrO2被还原和锆碳反应.调节反应原料的活性、熔盐种类及反应温度,可以在900~ 1100℃实现碳化锆粉体的合成.以NaCl为熔盐、氧氯化锆为锆源,在1000℃可以制取D50为18.599 μm、比表面积15.27 m2/g的高纯碳化锆粉体.  相似文献   

2.
本文以五氧化二钽、活性炭为主要原料,氟化钾为熔盐介质,通过碳热还原氮化法在氨气气氛下成功制备了氮化钽(Ta5N6)晶须.运用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)对合成产物的组成、结构和形貌进行了表征.研究了升温方式、氮化气氛、氮化时间和催化剂含量对产物形成的影响.当Ni与Ta2O5的摩尔比为0.1、氮化气氛为氨气(流量为300 mL/min)、氮化时间为6h时制备的晶须形貌最佳,晶须直径80~250 nm,长为1~5μm,晶须的生长机制为气-液-固(VLS)和气-固(VS)两种机理的混合机制.  相似文献   

3.
碳热还原法合成氮化硼纳米管   总被引:3,自引:3,他引:0  
以球磨后的氧化硼和活性碳粉共同作基本原料,加入NaCl和Fe粉填加剂,用简单的碳热还原法, 在1200℃、流动的氨气气氛中成功合成了大量的BN纳米管. 在扫描电镜和透射电镜下观察到纳米管直径均匀, 表面光滑,呈弯曲状,长度达十几个微米.EDS能谱、电子选区衍射和粉末X射线分析表明纳米管为六方相的BN多晶.  相似文献   

4.
利用ZrO2-B2O3-C反应体系碳热还原的基本原理,分别选用八水合氧氯化锆(ZrOCl2·8H2O)、硼酸(H3BO3)和蔗糖(C11H22OH)作为ZrO2、B2O3和C的来源,柠檬酸(C6H8O7)为络合剂,采用溶胶-凝胶法制得硼化锆的非晶前驱体,经过碳热还原反应热解制备出超细硼化锆粉体.分别研究了硼酸、蔗糖用量和热解温度对产物的物相组成的影响.采用红外光谱仪、热重-差热分析仪、X射线衍射仪、比表面积分析仪和扫描电镜对硼化锆前驱体及热解产物进行表征和分析.结果表明:初始原料中八水合氧氯化锆:硼酸:裂解碳(物质的量比)=1:4:10时,可在相对较低温度下(1300℃)热解得到硼化锆粉体,且随着热解温度的升高硼化锆粉体的纯度也越高.当热解温度为1600℃、热解时间为2h时碳热还原反应完成,产物中只有硼化锆;硼化锆颗粒呈球形或类球形,粒径分布在0.2~0.6 μm之间、比表面积为74 m2/g.  相似文献   

5.
合成温度对碳热还原法合成碳化硅晶须形貌的影响   总被引:1,自引:0,他引:1  
以SiO2微粉为硅源,炭黑为碳源,氧化硼为催化剂,采用碳热还原法分别在1500 ℃、1550 ℃、1600 ℃制备了SiC晶须.通过扫描电镜,电子探针和透射电镜等分析手段,研究了合成温度对SiC晶须形貌的影响,探讨了晶须的生长机理.结果表明:当合成温度为1500 ℃时,所合成的SiC晶须形貌呈竹节状,选区电子衍射分析发现孪晶等面缺陷在晶须的生长方向上周期性出现;当合成温度在1550 ℃以上时,哑铃状晶须的数量会急剧增多,分析表明晶须表面包裹的串珠小球为β-SiC.在晶须的顶端发现催化剂熔球,由此推测生长机理为VLS机理,但当合成温度超过1550 ℃时,SiC会以VS生长机理沿径向沉积生成哑铃状晶须.  相似文献   

6.
以La2O3、B2O3为原料、沥青粉为还原剂,在感应炉中采用碳热还原法快速制备了LaB6粉体.利用XRD、SEM、TEM以及激光粒度分析仪对合成的LaB6粉体进行了表征.结果表明:在感应加热及Ar气气氛下,经1600℃保温30 min后可获得分散性好且晶粒发育良好的LaB6粉体,其d50约为4.58 μm.在感应场下加热可明显缩短反应时间,这主要是由于在高温以及感应场的协同作用下反应体系中的液相快速生成加速了物质的迁移以及B4C过渡相的析出,从而促进了LaB6的形成.  相似文献   

7.
本文以氧化铝和石墨为原料,在普通氮气气氛条件下成功地合成出了氮化铝晶须。对碳热还原法合成AlN晶须的工艺条件,显微形貌,生长取向和生长机一进行初步分析和探讨。由于生长条件不同,AlN晶须通常呈六棱柱状,片状或四方形截面状等多种形态。  相似文献   

8.
李宝让  曹斌 《人工晶体学报》2010,39(6):1479-1484
采用氯化钠作为熔盐,利用熔盐法合成Bi3NbTiO9(BNTO)粉体,采用SEM和XRD研究了熔盐用量对粉体合成温度和粉体的形貌特征的影响.研究结果表明:熔盐用量对粉体合成温度以及形貌有很大影响.当熔盐和原料比例超过4: 1时,粉体颗粒尺寸明显增加,形貌呈现典型的四方片状,而且在相同条件下增大熔盐比例可以避免杂相生成.  相似文献   

9.
本文采用热熔还原法,以聚氯乙烯、氯化铵、氧化铁为原料制备复合超硬相氮化碳(α/β-C3 N4).采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)以及透射电子显微镜(TEM)对样品进行表征.在此基础上分析了不同温度和原料配比下合成复合相C3 N4的物相组成及形貌变化.结果表明样品形貌随着原料配比的不同在颗粒、棒状、纳米线之间转变.当C、N和Fe之间摩尔比为3:4:0.4时,所制备出的样品呈纳米线状,纳米线的直径约为15 nm,结晶性良好.而在其它配比下,只能获得棒状或颗粒状α/β复合相C3 N4.  相似文献   

10.
LiNO3熔盐辅助煅烧制备高分散纳米ZrO2粉体   总被引:2,自引:1,他引:1  
以可溶性锆盐溶液反向滴定氨水溶液成功地制备了纳米ZrO2粉体,系统研究了反应物浓度与煅烧温度对产物粒径和形貌的影响;在反应过程中加入表面活性剂,并采用正丁醇共沸蒸馏干燥和LiNO3熔盐辅助煅烧等方法,以控制粒径、减少团聚.通过热重-差热分析(TG-DTA)、透射电镜(TEM)、X射线衍射(XRD)、比表面积分析(BET)等对样品进行了形貌表征、晶型及粒径分析.结果表明:上述多种方法联合使用能够有效控制粒径、减少团聚,制备出的纳米ZrO2粉体分散性优异,为立方晶相结构,粒径15 nm左右.  相似文献   

11.
本文以Al(OH)3、煅烧Al2O3和纳米Al2O3为铝源,在KCl和LiCl的混合熔盐介质中,800~1 200 ℃温度范围内保温3 h合成超细ZnAl2O4粉体。采用XRD、SEM、激光粒度仪和比表面分析仪等重点分析了铝源种类对ZnAl2O4粉体合成温度、产物物相组成以及显微形貌的影响。在此基础上探讨了反应温度、熔盐与原料的质量比(Ws/Wr)对粉体合成的影响。结果表明:铝源种类显著影响ZnAl2O4的开始形成温度和粉体性能,相比于煅烧Al2O3,以Al(OH)3和纳米Al2O3为铝源生成ZnAl2O4的速率较快,在900 ℃时即可合成出单相ZnAl2O4。以煅烧Al2O3粉为铝源,当Ws/Wr为3∶1时,在1 000 ℃合成ZnAl2O4粉体的分散性最佳,而温度过高易造成粉体团聚长大。适当的Ws/Wr有利于ZnAl2O4的生成,当Ws/Wr为4∶1时合成的ZnAl2O4粒径最小。ZnAl2O4粉体均在一定程度保持着初始铝源的尺寸和形貌,表明熔盐法合成ZnAl2O4的机理主要遵循着“模板合成机理”。  相似文献   

12.
熔盐法制备铌酸钾钠粉体的研究   总被引:1,自引:0,他引:1  
以分析纯Na_2CO_3,K_2CO_3和Nb_2O_5为原料,以Na_2CO_3-K_2CO_3(摩尔比1: 1)为熔盐,采用熔盐法在700~850 ℃保温4 h合成了Na_(0.5)K_(0.5)NbO_3粉体.研究了合成温度、熔盐含量对粉体形貌的影响.XRD分析结果表明:通过熔盐法可以在700 ℃下合成纯钙钛矿结构的Na_(0.5)K_(0.5)NbO_3粉体;SEM分析显示:随着合成温度的升高,粉体形貌从圆球状转变为立方状,进一步提高合成温度,粉体形貌开始变得不规则;此外,合成粉体的尺寸随着熔盐含量的增加而增大,且粉体团聚现象明显减弱.以熔盐法合成的Na_(0.5)K_(0.5)NbO_3粉体为原料,采用传统固相烧结法制备Na_(0.5)K_(0.5)NbO_3陶瓷,经1060 ℃烧结后,Na_(0.5)K_(0.5)NbO_3陶瓷具有优异的压电性能和介电性能,其中压电常数d_(33) =124 pC/N,介电常数ε_(33)~T/ε_0 = 345,居里温度T_c 达 402 ℃.  相似文献   

13.
熔盐法制备针状莫来石晶体的研究   总被引:1,自引:2,他引:1  
本文采用Al2(SO4)3·18H2O和SiO2为原料,以K2SO4,Na2SO4为熔盐,用熔盐法合成了针状莫来石晶体.研究了不同合成温度、熔盐用量和保温时间对合成莫来石晶体的影响,分析了熔盐法合成针状莫来石的反应机理.研究结果表明:以K2SO4为熔盐,熔盐与反应物总量质量比为1: 1,合成温度为1000 ℃,保温时间为3 h时可以合成针状莫来石晶体,针状莫来石的生成符合L-S液固生长机理.  相似文献   

14.
15.
以分析纯的Bi2O3,Nb2O5 和 SrCO3为原料,以KCl和NaCl为熔盐,采用熔盐法在800~1000 ℃合成了片状SrBi2Nb2O9粉体.研究了熔盐含量及合成温度对晶体定向生长和粉体形貌的影响.结果表明:与固相法相比,熔盐法是一种有效的晶粒定向生长的方法.制备的粉体呈明显的片状和高度的各向异性,且无团聚现象产生.沿(00l)面择优生长适合的熔盐含量为60;质量分数,随着熔盐含量的增加,晶粒尺寸逐渐增大.合成温度在900 ℃为最优,可获得较大尺寸和高度各向异性的SrBi2Nb2O9粉体.  相似文献   

16.
分别以十八水合硫酸铝和氢氧化铝为γ-Al2O3源,以硫酸钠为熔盐,干法混合熔盐和γ-Al2O3,采用熔盐法制备片状氧化铝.结果表明:以氢氧化铝为γ-Al2O3源,由于氢氧化铝为母盐分解后仍保留球形多面体的母盐假相,熔盐只能溶解球形多面体表面的氧化铝,经过溶解-沉淀过程生长出少量镶嵌于球形多面体的片状氧化铝,不能制备片状氧化铝;以十八水合硫酸铝为氧化铝源,分解后形成的分散程度良好的γ-Al2O3与硫酸钠熔盐摩尔比γ-Al2O3∶Na2SO4=1∶4时能够充分溶解于熔盐中,可制备出分散的片状氧化铝.  相似文献   

17.
MAX相是一种兼具金属和陶瓷性能的新型三元层状过渡金属碳氮化物。传统合成MAX相的方法都有一定的局限性,如反应温度较高、合成时间过长、合成样品较少,且大部分无法直接一步制备所需MAX相。近些年来,采用熔盐法合成MAX相的报道越来越多,并且工艺持续改进。本文从传统熔盐法合成MAX相出发,分析并阐述了新熔盐法合成MAX相的研究进展。传统熔盐法利用较低熔点的熔盐作为反应溶剂,提高了反应效率;熔盐屏蔽法以熔盐作为反应溶剂的同时还可防止氧化,使得反应可以在空气中进行;路易斯酸盐法则是将熔盐作为反应原料来合成MAX新相;熔盐电化学法以电脱氧的方式,将合成原料由纯金属改为金属氧化物,降低了生产成本。熔盐法所合成MAX相产物较传统方法所合成产物的产量及纯度更高,所需要的温度、能耗以及成本更低。因此,熔盐合成法是未来大批量合成MAX相以及MAX新相合成的一个重要方法。  相似文献   

18.
本文以AgNO3、INCl3·4H2O和硫代尿素为原料,尿素和氯化胆碱为有机熔剂,用有机熔盐法(OMS)在200℃制备出纯度较高的黄铜矿结构AgInS2纳米针.使用X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)等对纳米针的物相、形貌和化学配比进行了定性和定量表征.XRD测试结果表明,实验获得产物确为黄铜矿结构AgInS2.使用Scherrer公式估算了AgInS2产物的晶粒平均粒度大小约为50 ~ 80 nm,表明所得确为AgInS2纳米晶.SEM观测到的纳米晶形貌外形均匀呈针状,纳米针的几何尺寸基于60 ~80 nm×1000~1500 nm.EDS测试结果显示AgInS2纳米针中Ag、In和S三元素的原子相对百分含量为26.66;、24.82;和50.52;,其化学计量比几近于1:1∶2物质的量比.通过紫外可见透过光谱得到截止波长为661 nm,禁带宽度为1.88 eV.以上结果充分表明OMS法是一种制备AgInS2纳米针的有效方式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号