首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Over the last years microarray technology has become one of the principal platform technologies for the high-throughput analysis of biological systems. Starting with the construction of first DNA microarrays in the 1990s, microarray technology has flourished in the last years and many different new formats have been developed. Peptide and protein microarrays are now applied for the elucidation of interaction partners, modification sites and enzyme substrates. Antibody microarrays are envisaged to be of high importance for the high-throughput determination of protein abundances in translational profiling approaches. First cell microarrays have been constructed to transform microarray technology from an in vitro technology to an in vivo functional analysis tool. All of these approaches share a common prerequisite: the solid support on which they are generated. The demands on this solid support are thereby as manifold as the applications themselves. This review is aimed to display the recent developments in surface chemistry and derivatization, and to summarize the latest developments in the different application areas of microarray technology.  相似文献   

2.
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple analytes in a single experiment. The specific affinity reaction of nucleic acids (hybridization) and antibodies towards antigens is the most common bioanalytical method for generating multiplexed quantitative results. Nucleic acid-based analysis is restricted to the detection of cells and viruses. Antibodies are more universal biomolecular receptors that selectively bind small molecules such as pesticides, small toxins, and pharmaceuticals and to biopolymers (e.g. toxins, allergens) and complex biological structures like bacterial cells and viruses. By producing an appropriate antibody, the corresponding antigenic analyte can be detected on a multiplexed immunoanalytical microarray. Food and water analysis along with clinical diagnostics constitute potential application fields for multiplexed analysis. Diverse fluorescence, chemiluminescence, electrochemical, and label-free microarray readout systems have been developed in the last decade. Some of them are constructed as flow-through microarrays by combination with a fluidic system. Microarrays have the potential to become widely accepted as a system for analytical applications, provided that robust and validated results on fully automated platforms are successfully generated. This review gives an overview of the current research on microarrays with the focus on automated systems and quantitative multiplexed applications. Figure MCR 3: A fully automated chemiluminescence microarray reader for analytical microarrays  相似文献   

3.
DNA microarrays have been used as powerful tools in genomics studies and single nucleotide polymorphisms analysis. However, the fluorescence detection used in most conventional DNA microarrays is still limited by its sensitivity. The aim of this study is to use a cationic surfactant, cetyl trimethylammonium bromide (CTAB), to enhance the fluorescence intensity of 6-carboxy-fluorescene (FAM)-labeled DNA probes immobilized on a DNA microarray. We show that in the presence of CTAB the immobilized FAM-labeled DNA probes is 11-fold brighter than that without exposure to CTAB. Similarly, when we hybridize FAM-labeled DNA targets to a DNA microarray and treat the surface with CTAB solution, the fluorescence intensity shows a 26-fold increase for perfect-match DNA targets. More importantly, the contrast between perfect-match and 1-mismatch DNA is also increased from 1.3-fold to 15-fold. This method offers a simple and efficient technique to enhance the detection limit of DNA microarrays.  相似文献   

4.
For the first time we report on the production of oligonucleotide microarrays using a highly parallel and highly integrated, pressure driven TopSpot nanoliter dispenser. The system enables non-contact printing of different media like oligonucleotides, DNA or protein solutions. We optimized the printing buffer needed for oligonucleotides microarrays production with respect to two major aspects: microfluidical optimum for droplet dispensing and biochemical coupling efficiency on different commercially available microarray slides. Coefficient of variations (CVs) of generated spot diameters were measured to be smaller than 1% within one single dispensing nozzle and smaller than 1.5% within all 24 parallel nozzles of the printhead for all printing buffers used. No carry-over and no cross-talk was found, in extensive experiments with oligonucleotides. Optimized printing buffer compositions and concentrations for oligonucleotide microarrays were found, as well as optimized coupling protocols. Furthermore, buffers and protocols were adapted to a host of different microarray slides used. With this system, prime critical points of microarray production are solved, leading to high quality high throughput microarray fabrication.  相似文献   

5.
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.  相似文献   

6.
Microarrays are becoming a ubiquitous tool of research in life sciences. However, the working principles of microarray-based methodologies are often misunderstood or apparently ignored by the researchers who actually perform and interpret experiments. This in turn seems to lead to a common over-expectation regarding the explanatory and/or knowledge-generating power of microarray analyses. In this note we intend to explain basic principles of five (5) major groups of analytical techniques used in studies of microarray data and their interpretation: the principal component analysis (PCA), the independent component analysis (ICA), the t-test, the analysis of variance (ANOVA), and self organizing maps (SOM). We discuss answers to selected practical questions related to the analysis of microarray data. We also take a closer look at the experimental setup and the rules, which have to be observed in order to exploit microarrays efficiently. Finally, we discuss in detail the scope and limitations of microarray-based methods. We emphasize the fact that no amount of statistical analysis can compensate for (or replace) a well thought through experimental setup. We conclude that microarrays are indeed useful tools in life sciences but by no means should they be expected to generate complete answers to complex biological questions. We argue that even well posed questions, formulated within a microarray-specific terminology, cannot be completely answered with the use of microarray analyses alone.  相似文献   

7.
8.
9.
In contrast to DNA microarrays, production of protein microarrays is an immense technological challenge due to high complexity and diversity of proteins. In this paper we investigate three essential aspects of protein microarray fabrication based on the highly parallel and non-contact TopSpot technology: evaporation of probes during long lasting production times, optimization of protein immobilization and improvement of protein microarray reproducibility. Evaporation out of the printhead reservoirs was reduced to a minimum by sealing the reservoirs with gas permeable foils or PDMS frames. This led to dramatically lowered setup times through the possibility of long-term, ready-to-print storage of filled printheads. To optimize immobilization efficiency 128 printing buffers were tested by printing two different proteins onto seven different microarray slide types. This way we were able to reduce the CV of spot diameter on the microarray slide below 1.14%. To remarkably increase protein immobilization efficiency on microarray slides the commonly used EDC-NHS system (a laboratory method for immobilization of proteins) was miniaturized by using a new drop-in-drop printing technique. Additionally the very fast UV cross-linking was used to immobilize antibodies. The optimized system was used to produce antibody microarrays and with it microarray ELISA experiments were performed successfully.  相似文献   

10.
Carbohydrate microarrays have become very powerful tools to elucidate the molecular basis of carbohydrate-recognition events in a high-throughput manner. This microarray technology has been applied in the rapid analysis of the binding properties of a variety of binding partners such as lectins, antibodies, mammalian cells, pathogens and viruses. In this feature article, methods for the preparation of carbohydrate microarrays and their applications in biological and biomedical research are described.  相似文献   

11.
DNA microarrays have become one of the most powerful tools in the field of genomics and medical diagnosis. Recently, there has been increased interest in combining microfluidics with microarrays since this approach offers advantages in terms of portability, reduced analysis time, low consumption of reagents, and increased system integration. Polymers are widely used for microfluidic systems, but fabrication of microarrays on such materials often requires complicated chemical surface modifications, which hinders the integration of microarrays into microfluidic systems. In this paper, we demonstrate that simple UV irradiation can be used to directly immobilize poly(T)poly(C)-tagged DNA oligonucleotide probes on many different types of plastics without any surface modification. On average, five- and fourfold improvement in immobilization and hybridization efficiency have been achieved compared to surface-modified slides with aminated DNA probes. Moreover, the TC tag only costs 30% of the commonly used amino group modifications. Using this microarray fabrication technique, a portable cyclic olefin copolymer biochip containing eight individually addressable microfluidic channels was developed and used for rapid and parallel identification of Avian Influenza Virus by DNA hybridization. The one-step, cost-effective DNA-linking method on non-modified polymers significantly simplifies microarray fabrication procedures and permits great flexibility to plastic material selection, thus making it convenient to integrate microarrays into plastic microfluidic systems.  相似文献   

12.
Koga H  Kyo M  Usui-Aoki K  Inamori K 《Electrophoresis》2006,27(18):3676-3683
Numerous antibodies have been developed and validated in recent years, and show promise for use in novel functional protein assays. Such assays would be an alternative to pre-existing comprehensive assays, such as DNA microarrays. Antibody microarrays are thought to represent those functional protein assays. While a variety of attempts have been made to apply DNA microarray technology to antibody microarrays, a fully optimized protocol has not been established. We have been conducting a project to comprehensively produce antibodies against mouse KIAA ("KI" stands for "Kazusa DNA Research Institute" and "AA" are reference characters) proteins. Using our library of antibodies, we established a novel antibody microarray format that utilizes surface plasmon resonance (SPR) technology. A label-free real-time measurement of protein expression in crude cell lysates was achieved by direct readout of the bindings using SPR. Further refinement of the antibody microarray format enabled us to detect a smaller quantity of target proteins in the lysate without the bulk effect. In this review, we first summarize available antibody array formats and then describe the above-mentioned format utilizing updated SPR technology.  相似文献   

13.
In current microarraying experiments, data quality is in large part determined by the quality of the spots that compose the microarray. Since many microarrays are made with contact printing techniques, microarray spot quality is fundamentally linked to the surface characteristics of the microarray substrate. In this work, surface coatings, consisting of self-assembled monolayers (SAMs) of mixed alkanethiol molecules, were used to control the surface properties of the microarray substrate. X-ray photoelectron spectroscopy and equilibrium contact angle measurements were performed in order to confirm the chemical content and wettability of these surface coatings. To test their performance in microarraying applications, sample microarrays were printed on these mixed alkanethiol films and then characterized with a noncontact visual metrology system and a fluorescence scanner. This work demonstrates that utilizing mixed alkanethiol SAMs as a surface coating provides spatially homogeneous surface characteristics that are reproducible across multiple microarray substrates as well as within a substrate. In addition, this paper demonstrates that these films are stable and robust as they can maintain their surface characteristics over time. Overall, it is demonstrated that SAMs of mixed alkanethiols serve as a useful surface coating, which enhances spot and therefore data quality in microarraying applications.  相似文献   

14.
Protein microarrays, an emerging class of proteomic technologies, are quickly becoming essential tools for large-scale and high throughput biochemistry and molecular biology. Recent progress has been made in all the key steps of protein microarray fabrication and application, such as the large-scale cloning of expression-ready prokaryotic and eukaryotic ORFs, high throughput protein purification, surface chemistry, protein delivery systems, and detection methods. Two classes of protein microarrays are currently available: analytical and functional protein microarrays. In the case of analytical protein microarrays, well-characterized molecules with specific activity, such as antibodies, peptide-MHC complexes, or lectins, are used as immobilized probes. These arrays have become one of the most powerful multiplexed detection platforms. Functional protein microarrays are being increasingly applied to many areas of biological discovery, including drug target identification/validation and studies of protein interaction, biochemical activity, and immune responses. Great progress has been achieved in both classes of protein microarrays in terms of sensitivity and specificity, and new protein microarray technologies are continuing to emerge. Finally, protein microarrays have found novel applications in both scientific research and clinical diagnostics.  相似文献   

15.
Microarray-based technology is in need of flexible and cost-effective chemistry for fabrication of oligonucleotide microarrays. We have developed a novel method for the fabrication of oligonucleotide microarrays with unmodified oligonucleotide probes on nanoengineered three-dimensional thin films that are deposited on glass slides by consecutive layer-to-layer adsorption of polyelectrolytes. Unmodified oligonucleotide probes were spotted and immobilized on these multilayered polyelectrolyte thin films (PET) by electrostatic adsorption and entrapment on the porous structure of the PET film. The PET provides higher probe binding capacity and thus higher hybridization signal than that of the traditional two-dimensional aminosilane and poly-L-lysine coated slides. Immobilized probe densities of 3.4 x 10(12)/cm2 were observed for microarray spots on PET with unmodified 50-mer oligonucleotide probes, which is comparable to the immobilized probe densities of alkyamine-modified 50-mer probes end-tethered on an aldehyde-functionalized slide. The study of hybridization efficiency showed that 90% of immobilized probes on PET film are accessible to target DNA to form duplex format in hybridization. The DNA microarray fabricated on PET film has wider dynamic range (about 3 orders of magnitude) and lower detection limit (0.5 nM) than the conventional amino- and aldehyde-functionalized slides. Oligonucleotide microarrays fabricated on these PET-coated slides also had consistent spot morphology. In addition, discrimination of single nucleotide polymorphism of 16S rRNA genes was achieved with the PET-based oligonucleotide microarrays. The PET microarrays constructed by our self-assembly process is cost-effective, versatile, and well suited for immobilizing many types of biological active molecules so that a wide variety of microarray formats can be developed.  相似文献   

16.
分子微阵列是有机合成(特别是组合化学合成)方法应用于生物和医学研究而发展起来的高科技集成技术,通过把微电子、微加工技术和有机化学合成反应相结合,在固体基质(如硅片、玻片、瓷片等)表面构建微型的生物有机化学分子系统,以实现对细胞、蛋白质、核酸及其他生物组分进行快速、敏感、高效地处理.近年来,随着表面化学构建策略研究的不断深入和迅猛发展,分子微阵列技术的应用领域不断拓展,已从最初用于核酸分子的杂交测序延伸到基因组功能研究的各个方面.本文着重综述了光敏分子微阵列的表面化学构建策略研究及其在化学生物学分析中应用的最新进展,并展望了其发展的未来趋势.内容主要包括:小分子与多肽分子微阵列、蛋白质分子微阵列、核酸分子微阵列和糖分子微阵列等.  相似文献   

17.
Park S  Shin I 《Organic letters》2007,9(9):1675-1678
[reaction: see text] Carbohydrate microarrays have been used recently for the rapid analysis of glycan-protein or glycan-cell interactions and for the detection of pathogens. As a demonstration of its significance and versatility, the microarray technology has been applied in this effort to assay glycosyltransferase activities. In addition, carbohydrate microarray based methods have been employed to quantitatively determine binding affinities between lectins and carbohydrates.  相似文献   

18.
The potential use of a fluorescent tag system based on 7-(1H-1,2,3-triazol-4-yl)coumarin fluorophore having a fluorous moiety and a polyethylene glycol (PEG) spacer at opposite ends as a tool for a stepwise and comparative evaluation of the fabrication process of small molecule microarrays was illustrated by the qualitative analysis of the results of the fluorescence detection obtained from the microarray experiments using the tagged biotins and streptavidin-Cy3 (and avidin-Cy5) as the binding partners.  相似文献   

19.
Fluorescence has been the preferred choice for data quantification in biomedical microarray formats since their earliest days. As much as the formats have grown and evolved over the years, the methods in optical analysis have become ever more sophisticated and complex in order to produce more and better output. This review will provide an insight into the most common methods and the state-of-the-art of all areas in microarray fluorescence analysis. Starting with an overview on microarray formats with a focus on their demands on the readout, the most common and useful organic fluorescent stains are discussed before proceeding on to other approaches; the use of semiconductor nanocrystals (quantum dots), polymer and silica nanoparticles and fluorescent proteins. Ways to enhance the intrinsically low signal on biochips have become increasingly important as they offer a sound approach towards the detection of low concentration sample content. The three main categories are presented: amplification using DNA, enzymes, and dendrimers. As much diversity as on the microarrays themselves can be found at the detection device. Standard optical microarray detectors, and non-standard methods using fluorescence anisotropy, fluorescence lifetime imaging (FLIM) and fluorescence resonance energy transfer (FRET), and their advantages and disadvantages are discussed.  相似文献   

20.
建立了一种基于不相交主成分分析(Disjoint PCA)和遗传算法(GA)的特征变量选择方法, 并用于从基因表达谱(Gene expression profiles)数据中识别差异表达的基因. 在该方法中, 用不相交主成分分析评估基因组在区分两类不同样品时的区分能力; 用GA寻找区分能力最强的基因组; 所识别基因的偶然相关性用统计方法评估. 由于该方法考虑了基因间的协同作用更接近于基因的生物过程, 从而使所识别的基因具有更好的差异表达能力. 将该方法应用于肝细胞癌(HCC)样品的基因芯片数据分析, 结果表明, 所识别的基因具有较强的区分能力, 优于常用的基因芯片显著性分析(Significance analysis of microarrays, SAM)方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号