首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of a sterically hindered di(mu-carboxylato)diiron(II) complex bearing terminal N,N',N"-trimethyl-1,4,7-triazacyclononane (Me(3)TACN) ligands and its reaction with dioxygen to afford a (mu-oxo)di(mu-carboxylato)diiron(III) complex are described. Both compounds initiate catalytic oxo transfer with O(2) as the terminal oxidant, converting phosphines to phosphine oxides, dimethyl sulfide to dimethyl sulfoxide, and dibenzylamine to benzaldehyde. Triphenylphosphine is oxidized to triphenylphosphine oxide with a turnover number of >2000 mol.P/mol.cat.  相似文献   

2.
Li Y  Cao R  Lippard SJ 《Organic letters》2011,13(19):5052-5055
A novel triptycene-based ligand with a preorganized framework was designed to model carboxylate-bridged diiron active sites in bacterial multicomponent monooxygenase (BMM) hydroxylase enzymes. The synthesis of the bis(benzoxazole)-appended ligand L1 depicted was accomplished in 11 steps. Reaction of L1 with iron(II) triflate and a carboxylate source afforded the desired diiron(II) complex [Fe(2)L1(μ-OH)(μ-O(2)CAr(Tol))(OTf)(2)].  相似文献   

3.
A dinucleating macrocycle, H(2)PIM, containing phenoxylimine metal-binding units has been prepared. Reaction of H(2)PIM with [Fe(2)(Mes)(4)] (Mes = 2,4,6-trimethylphenyl) and sterically hindered carboxylic acids, Ph(3)CCO(2)H or Ar(Tol)CO(2)H (2,6-bis(p-tolyl)benzoic acid), afforded complexes [Fe(2)(PIM)(Ph(3)CCO(2))(2)] (1) and [Fe(2)(PIM)(Ar(Tol)CO(2))(2)] (2), respectively. X-ray diffraction studies revealed that these diiron(II) complexes closely mimic the active site structures of the hydroxylase components of bacterial multicomponent monooxygenases (BMMs), particularly the syn disposition of the nitrogen donor atoms and the bridging μ-η(1)η(2) and μ-η(1)η(1) modes of the carboxylate ligands at the diiron(II) centers. Cyclic voltammograms of 1 and 2 displayed quasi-reversible redox couples at +16 and +108 mV vs ferrocene/ferrocenium, respectively. Treatment of 2 with silver perchlorate afforded a silver(I)/iron(III) heterodimetallic complex, [Fe(2)(μ-OH)(2)(ClO(4))(2)(PIM)(Ar(Tol)CO(2))Ag] (3), which was structurally and spectroscopically characterized. Complexes 1 and 2 both react rapidly with dioxygen. Oxygenation of 1 afforded a (μ-hydroxo)diiron(III) complex [Fe(2)(μ-OH)(PIM)(Ph(3)CCO(2))(3)] (4), a hexa(μ-hydroxo)tetrairon(III) complex [Fe(4)(μ-OH)(6)(PIM)(2)(Ph(3)CCO(2))(2)] (5), and an unidentified iron(III) species. Oxygenation of 2 exclusively formed di(carboxylato)diiron(III) compounds, a testimony to the role of the macrocylic ligand in preserving the dinuclear iron center under oxidizing conditions. X-ray crystallographic and (57)Fe M?ssbauer spectroscopic investigations indicated that 2 reacts with dioxygen to give a mixture of (μ-oxo)diiron(III) [Fe(2)(μ-O)(PIM)(Ar(Tol)CO(2))(2)] (6) and di(μ-hydroxo)diiron(III) [Fe(2)(μ-OH)(2)(PIM)(Ar(Tol)CO(2))(2)] (7) units in the same crystal lattice. Compounds 6 and 7 spontaneously convert to a tetrairon(III) complex, [Fe(4)(μ-OH)(6)(PIM)(2)(Ar(Tol)CO(2))(2)] (8), when treated with excess H(2)O.  相似文献   

4.
Carboxylate-bridged high-spin diiron(II) complexes with distinctive electronic transitions were prepared by using 4-cyanopyridine (4-NCC(5)H(4)N) ligands to shift the charge-transfer bands to the visible region of the absorption spectrum. This property facilitated quantitation of water-dependent equilibria in the carboxylate-rich diiron(II) complex, [Fe(2)(mu-O(2)CAr(Tol))(4)(4-NCC(5)H(4)N)(2)] (1), where (-)O(2)CAr(Tol) is 2,6-di-(p-tolyl)benzoate. Addition of water to 1 reversibly shifts two of the bridging carboxylate ligands to chelating terminal coordination positions, converting the structure from a paddlewheel to a windmill geometry and generating [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(4-NCC(5)H(4)N)(2)(H(2)O)(2)] (3). This process is temperature dependent in solution, rendering the system thermochromic. Quantitative treatment of the temperature-dependent spectroscopic changes over the temperature range from 188 to 298 K in CH(2)Cl(2) afforded thermodynamic parameters for the interconversion of 1 and 3. Stopped flow kinetic studies revealed that water reacts with the diiron(II) center ca. 1000 time faster than dioxygen and that the water-containing diiron(II) complex reacts with dioxygen ca. 10 times faster than anhydrous analogue 1. Addition of {H(OEt(2))(2)}{B}, where B(-) is tetrakis(3,5-di(trifluoromethyl)phenyl)borate, to 1 converts it to [Fe(2)(mu-O(2)CAr(Tol))(3)(4-NCC(5)H(4)N)(2)](B) (5), which was also structurally characterized. Mossbauer spectroscopic investigations of solid samples of 1, 3, and 5, in conjunction with several literature values for high-spin iron(II) complexes in an oxygen-rich coordination environment, establish a correlation between isomer shift, coordination number, and N/O composition. The products of oxygenating 1 in CH(2)Cl(2) were identified crystallographically to be [Fe(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(4-NCC(5)H(4)N)(2)].2(HO(2)CAr(Tol)) (6) and [Fe(6)(mu-O)(2)(mu-OH)(4)(mu-O(2)CAr(Tol))(6)(4-NCC(5)H(4)N)(4)Cl(2)] (7).  相似文献   

5.
The synthesis of the first singly bridged non-heme diiron complex with a mu-hydroxo bridging ligand, [{(salten)Fe}2(OH)][B(C6H5)4].(CH3CN)x.(H2O)y (1) [H2salten = 4-azaheptane-1,7-bis(salicylideneiminate)], is reported. The complex has been characterized with X-ray crystallography, FTIR, magnetic susceptibility measurements, and M?ssbauer spectroscopy. The data have been compared with the results of DFT calculations on both 1 and a model with an unsupported mu-oxo bridge (2) to verify the formulation of the complex as a mu-hydroxo-bridged species. The X-ray structure [Fe-O(H) = 1.997(1) A and Fe-O(H)-Fe = 159 degrees ] is consistent with the DFT-optimized geometry of 1 [Fe-O(H) = 2.02 A and Fe-O(H)-Fe = 151 degrees ]; the Fe-O(H) distance in 1 is about 0.2 A longer than the Fe-O separations in the optimized geometry of 2 (1.84 A) and in the crystallographic structures of diiron(III) compounds with unsupported mu-oxo bridges (1.77-1.81 A). The formulation of 1 as a hydroxo-bridged compound is also supported by the presence of an O-H stretch band in the FTIR spectrum of the complex. The magnetic susceptibility measurements of 1 reveal antiferromagnetic exchange (J = 42 cm(-1) and H(ex) = JS(1).S(2)). Nearly the same J value is obtained by analyzing the temperature dependence of the M?ssbauer spectra (J = 43 cm(-1); other parameters: delta = 0.49 mm s(-1), DeltaE(Q) = -0.97 mm s(-1), and eta = 0.45 at 4.2 K). The experimental J values and M?ssbauer parameters agree very well with those obtained from DFT calculations for the mu-hydroxo-bridged compound (J = 46 cm(-1), delta = 0.48 mm s(-1), DeltaE(Q) = -1.09 mm s(-1), and eta = 0.35). The exchange coupling constant in 1 is distinctly different from the value J approximately 200 cm(-1) calculated for the optimized mu-oxo-bridged species, 2. The increased exchange-coupling in 2 arises primarily from a decrease in the Fe-O bond length.  相似文献   

6.
Semiclassical molecular dynamics simulations have been combined with quantum chemistry calculations to provide detailed modeling of the methane and ethane hydroxylation reactions catalyzed by the hydroxylase enzymes of the soluble methane monooxygenase system. The experimental distribution of enantiomeric alcohols in the reaction of ethanes made chiral by the use of hydrogen isotopes is quantitatively reproduced and explained. The reaction dynamics involve a mixture of concerted and bound radical trajectories, and we characterize each of these reactive channels in detail. Diffusion of the bound radical intermediate at the active site core determines the global rate constant. The results also provide a qualitative rationale for the lack of ring-opened products derived from certain radical clock substrate probes and for the relative rate constants and kinetic isotope effects exhibited by a variety of substrates.  相似文献   

7.
Steady state and laser flash photolysis studies of the heme/non-heme mu-oxo diiron complex [((6)L)Fe(III)-O-Fe(III)-Cl](+) (1) have been undertaken. The anaerobic photolysis of benzene solutions of 1 did not result in the buildup of any photoproduct. However, the addition of excess triphenylphosphine resulted in the quantitative photoreduction of 1 to [((6)L)Fe(II)...Fe(II)-Cl](+) (2), with concomitant production by oxo-transfer of 1 equiv of triphenylphosphine oxide. Under aerobic conditions and excess triphenylphosphine, the reaction produces multiple turnovers (approximately 28) before the diiron complex is degraded. The anaerobic photolysis of tetrahydrofuran (THF) or toluene solutions of 1 likewise results in the buildup of 2. The oxidation products from these reactions included gamma-butyrolactone (approximately 15%) for the reaction in THF and benzaldehyde (approximately 23%) from the reaction in toluene. In either case, the O-atom which is incorporated into the carbonyl product is derived from dioxygen present under workup or under aerobic photolysis conditions. Transient absorption measurements of low-temperature THF solutions of 1 revealed the presence of an (P)Fe(II)-like [P = tetraaryl porphyrinate dianion] species suggesting that the reactive species is a formal (heme)Fe(II)/Fe(IV)=O(non-heme) pair. The non-heme Fe(IV)=O is thus most likely responsible for C-H bond cleavage and subsequent radical chemistry. The photolysis of 1 in chlorobenzene or 1,2-dichlorobenzene resulted in C-Cl cleavage reactions and the formation of [[((6)L)Fe(III)-Cl...Fe(III)-Cl](2)O](2+) (3), with chloride ligands that are derived from solvent dehalogenation chemistry. The resulting organic products are biphenyl trichlorides or biphenyl monochlorides, derived from dichlorobenzene and chlorobenzene, respectively. Similarly, product 3 is obtained by the photolysis of benzene-benzyl chloride solutions of 1; the organic product is benzaldehyde (approximately 70%). A brief discussion of the dehalogenation chemistry, along with relevant environmental perspectives, is included.  相似文献   

8.
The Stille coupling reaction of stannylindole 12 with 4-iodoimidazole 13 (or 24) in the presence of PdCl(2)(PPh(3))(2) gave the corresponding indole-imidazole coupling product 14 (or 25), thereby affording a new synthetic approach to the alkaloid granulatimide (7), isolated from the Brazilian ascidian Didemnum granulatum, as well as its structural analogues, 10-methylgranulatimide (23), 17-methylgranulatimide (30), 10,17-dimethylgranulatimide (31).  相似文献   

9.
The catalytic oxidation of triphenylphosphine in the presence of dioxygen by the diiron(II) complex [Fe(2)(micro-O(2)CAr(Tol))(2)(Me(3)TACN)(2)(MeCN)(2)](OTf)(2) (1), where (-)O(2)CAr(Tol) = 2,6-di(p-tolyl)benzoate and Me(3)TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane, has been investigated. The corresponding diiron(III) complex, [Fe(2)(micro-O)(micro-O(2)CAr(Tol))(2)(Me(3)TACN)(2)](OTf)(2) (2), the only detectable iron-containing species during the course of the reaction, can itself promote the reaction. Phosphine oxidation is coupled to the catalytic oxidation of THF solvent to afford, selectively, the C-C bond-cleavage product 3-hydroxypropylformate, an unprecedented transformation. After consumption of the phosphine, solvent oxidation continues but results in the products 2-hydroperoxytetrahydrofuran, butyrolactone, and butyrolactol. The similarities of the reaction pathways observed in the presence and absence of catalyst, as well as (18)O labeling, solvent dependence, and radical probe experiments, provide evidence that the oxidation is initiated by a metal-centered H-atom abstraction from THF. A mechanism for catalysis is proposed that accounts for the coupled oxidation of the phosphine and the THF ring-opening reaction.  相似文献   

10.
He C  Lippard SJ 《Inorganic chemistry》2001,40(7):1414-1420
A bis(mu-carboxylato)(mu-1,8-naphthyridine)diiron(II) complex, [Fe2(BPMAN)(mu-O2CPhCy)2](OTf)2 (1), was prepared by using the 1,8-naphthyridine-based dinucleating ligand BPMAN, where BPMAN = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine. The cyclic voltammogram (CV) of this complex in CH2Cl2 exhibited two reversible one-electron redox waves at +296 mV (DeltaE(p) = 80 mV) and +781 mV (DeltaE(p) = 74 mV) vs Cp2Fe+/Cp2Fe, corresponding to the FeIIIFeII/FeIIFeII and FeIIIFeIII/FeIIIFeII couples, respectively. This result is unprecedented for diiron complexes having no single atom bridge. Dinuclear complexes [Fe2(BPMAN)(mu-OH)(mu-O2CPhCy)](OTf)2 (2) and [Mn2(BPMAN)(mu-O2CPhCy)2](OTf)2 (3) were also synthesized and structurally characterized. The cyclic voltammogram of 2 in CH2Cl2 exhibited one reversible redox wave at -22 mV only when the potential was kept below +400 mV. The CV of 3 showed irreversible oxidation at potentials above +900 mV. Diiron(II) complexes [Fe2(BEAN)(mu-O2CPhCy)3](OTf) (4) and [Fe2(BBBAN)(mu-OAc)2(OTf)](OTf) (6) were also prepared and characterized, where BEAN = 2,7-bis(N,N-diethylaminomethyl)-1,8-naphthyridine and BBBAN = 2,7-bis[2-[2-(1-methyl)benzimidazolylethyl]-N-benzylaminomethyl]-1,8-naphthyridine. The cyclic voltammograms of these complexes were recorded. The M?ssbauer properties of the diiron compounds were studied.  相似文献   

11.
Rubrerythrin (Rbr) is a 44-kDa homodimeric protein, found in many air-sensitive bacteria and archaea, which contains a unique combination of a rubredoxin-like [Fe(SCys)(4)] site and a non-sulfur, oxo/dicarboxylato-bridged diiron site. The diiron site structure resembles those found in O2-activating diiron enzymes. However, Rbr instead appears to function as a hydrogen peroxide reductase (peroxidase). The diferrous site in all-ferrous Rbr (Rbr(red)) shows a much greater reactivity with H2O2 than does the diferric site in all-ferric Rbr (Rbr(ox)), but only the latter structure has been reported. Here we report the X-ray crystal structures of the recombinant Rbr(red) from the sulfate reducing bacterium, Desulfovibrio vulgaris, as well as its azide adduct (Rbr(red)N3). We have also redetermined the structure of Rbr(ox) to a higher resolution than previously reported. The structural differences between Rbr(ox) and Rbr(red) are localized entirely at the diiron site. The most striking structural change upon reduction of the diferric to the diferrous site of Rbr is a 1.8-A movement of one iron away from a unique glutamate carboxylate ligand and toward a trans-disposed histidine side chain, which replaces the glutamate as a ligand. This movement increases the inter-iron distance from 3.3 to 4 A. Rbr(red)N(3) shows this same iron movement and His-->Glu ligand replacement relative to Rbr(ox), and, in addition, an azide coordinated to the diiron site in a cis mu-1,3 fashion, replacing two solvent ligands in Rbr(red). Relative to those in O2-activating enzymes, the bridging carboxylate ligation of the Rbr diiron site is less flexible upon diferric/diferrous interconversion. The diferrous site is also much more rigid, symmetrical, and solvent-exposed than those in O2-activating enzymes. On the basis of these unique structural features, a mechanism is proposed for facile reduction of hydrogen peroxide by Rbr involving a cis mu-eta(2) H2O2 diferrous intermediate.  相似文献   

12.
The synthesis, structural characterization, and NO reactivity of carboxylate-bridged dimetallic complexes were investigated. The diiron(II) complex [Fe(2)(mu-O(2)CAr(Tol))(4)(Ds-pip)(2)] (1), where O(2)CAr(Tol) = 2,6-di(p-tolyl)benzoate and Ds-pip = dansyl-piperazine, was prepared and determined by X-ray crystallography to have a paddlewheel geometry. This complex reacts with NO within 1 min with a concomitant 4-fold increase in fluorescence emission intensity ascribed to displacement of Ds-pip. Although the diiron complex reacts with NO, as revealed by infrared spectroscopic studies, its sensitivity to dioxygen renders it unsuitable as an atmospheric NO sensor. The air-stable dicobalt(II) analogue was also synthesized and its reactivity investigated. In solution, the dicobalt(II) complex exists as an equilibrium between paddlewheel [Co(2)(mu-O(2)CAr(Tol))(4)(Ds-pip)(2)] (2) and windmill [Co(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(Ds-pip)(2)] (3) geometric isomers. Conditions for crystallizing pure samples of each of these isomers are described. Reaction of 2 with excess NO proceeds by reductive nitrosylation giving [Co(mu-O(2)CAr(Tol))(2)(NO)(4)] (5), which is accompanied by release of the Ds-pip fluorophore that is N-nitrosated in the process. This reaction affords an overall 9.6-fold increase in fluorescence emission intensity, further demonstrating the potential utility of ligand dissociation as a strategy for designing fluorescence-based sensors to detect nitric oxide in a variety of contexts.  相似文献   

13.
14.
Two tetracarboxylate diiron(II) complexes, [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(C(5)H(5)N)(2)] (1a) and [Fe(2)(mu-O(2)CAr(Tol))(4)(4-(t)BuC(5)H(4)N)(2)] (2a), where Ar(Tol)CO(2)(-) = 2,6-di(p-tolyl)benzoate, react with O(2) in CH(2)Cl(2) at -78 degrees C to afford dark green intermediates 1b (lambda(max) congruent with 660 nm; epsilon = 1600 M(-1) cm(-1)) and 2b (lambda(max) congruent with 670 nm; epsilon = 1700 M(-1) cm(-1)), respectively. Upon warming to room temperature, the solutions turn yellow, ultimately converting to isolable diiron(III) compounds [Fe(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (L = C(5)H(5)N (1c), 4-(t)BuC(5)H(4)N (2c)). EPR and M?ssbauer spectroscopic studies revealed the presence of equimolar amounts of valence-delocalized Fe(II)Fe(III) and valence-trapped Fe(III)Fe(IV) species as major components of solution 2b. The spectroscopic and reactivity properties of the Fe(III)Fe(IV) species are similar to those of the intermediate X in the RNR-R2 catalytic cycle. EPR kinetic studies revealed that the processes leading to the formation of these two distinctive paramagnetic components are coupled to one another. A mechanism for this reaction is proposed and compared with those of other synthetic and biological systems, in which electron transfer occurs from a low-valent starting material to putative high-valent dioxygen adduct(s).  相似文献   

15.
16.
Two compounds, [Fe2(mu-OH)(mu-Ph4DBA)(TMEDA)2(OTf)] (4) and [Fe2(mu-OH)(mu-Ph4DBA)(DPE)2(OTf)] (7), where Ph4DBA(2-) is the dinucleating bis(carboxylate) ligand dibenzofuran-4,6-bis(diphenylacetate), have been prepared as synthetic models for the dioxygen-binding non-heme diiron protein hemerythrin (Hr). X-ray crystallography reveals that, in the solid state, these compounds contain the asymmetric coordination environment found at the diiron center in the reduced form of the protein, deoxyHr. M?ssbauer spectra of the models (4, delta = 1.21(2), DeltaE(Q) = 2.87(2) mm s(-1); 7, delta(av) = 1.23(1), DeltaE(Qav) = 2.79(1) mm s(-1)) and deoxyHr (delta = 1.19, DeltaE(Q) = 2.81 mm s(-1)) are also in good agreement. Oxygenation of the diiron(II) complexes dissolved in CH2Cl2 containing 3 equiv of N-MeIm (4) or neat EtCN (7) at -78 degrees C affords a red-orange solution with optical bands at 336 nm (7300 M(-1) cm(-1)) and 470 nm (2600 M(-1) cm(-1)) for 4 and at 334 nm (6400 M(-1) cm(-1)) and 484 nm (2350 M(-1) cm(-1)) for 7. These spectra are remarkably similar to that of oxyHr, 330 nm (6800 M(-1) cm(-1)) and 500 nm (2200 M(-1) cm(-1)). The electron paramagnetic resonance (EPR) spectrum of the cryoreduced, mixed-valence dioxygen adduct of 7 displays properties consistent with a (mu-oxo)diiron(II,III) core. An investigation of 7 and its dioxygen-bound adduct by extended X-ray absorption fine structure (EXAFS) spectroscopy indicates that the oxidized species contains a (mu-oxo)diiron(III) core with iron-ligand distances in agreement with those expected for oxide, carboxylate, and amine/hydroperoxide donor atoms. The analogous cobalt complex [Co2(mu-OH)(mu-Ph4DBA)(TMEDA)2(OTf)] (6) was synthesized and structurally characterized, but it was unreactive toward dioxygen.  相似文献   

17.
Iron is emerging as a key player in the search for efficient and environmentally benign methods for the functionalisation of C-H bonds. Non-heme iron enzymes catalyse a diverse array of oxidative chemistry in nature, and small-molecule complexes designed to mimic the non-heme iron active site have great potential as C-H activation catalysts. Herein we report the synthesis of a series of organic ligands that incorporate key features of the non-heme iron active site. Iron(ii) complexes of these ligands have been generated in situ and their ability to promote hydrocarbon oxidation has been investigated. Several of these systems promote the biomimetic dihydroxylation of cyclohexene at low levels, when hydrogen peroxide is used as the oxidant; allylic oxidation products are also observed. An investigation of ligand stability reveals formation of several breakdown products under the conditions of the oxidative turnover reactions. These products arise via oxidative decarboxylation, dehydration and deamination reactions. Taken together these results indicate that competing mechanisms are at play with these systems: biomimetic hydroxylation involving high-valent iron species, and allylic oxidation via Fenton chemistry and Haber-Weiss radical pathways.  相似文献   

18.
Molybdenum-dependent nitrogenase binds and reduces N2 at the [Fe7, Mo, S9, X, homocitrate] iron-molybdenum cofactor (FeMo-co). Kinetic and spectroscopic studies of nitrogenase variants indicate that a single Fe-S face is the most likely binding site. Recently, substantial progress has been made in determining the structures of nitrogenase intermediates formed during alkyne and N2 reduction through use of ENDOR spectroscopy. However, constraints derived from ENDOR studies of biomimetic complexes with known structure would powerfully contribute in turning experimentally derived ENDOR parameters into structures for species bound to FeMo-co during N2 reduction. The first report of a paramagnetic Fe-S compound that binds reduced forms of N2 involved Fe complexes stabilized by a bulky beta-diketiminate ligand (Vela, J.; Stoian, S.; Flaschenriem, C. J.; Münck, E.; Holland, P. L. J. Am. Chem. Soc. 2004, 126, 4522-4523). Treatment of a sulfidodiiron(II) complex with phenylhydrazine gave an isolable mixed-valence FeII-Fe(III) complex with a bridging phenylhydrazido (PhNNH2) ligand, and this species now has been characterized by ENDOR spectroscopy. Using both 15N, 2H labeled and unlabeled forms of the hydrazido ligand, the hyperfine and quadrupole parameters of the -N-NH2 moiety have been derived by a procedure that incorporates the (near-) mirror symmetry of the complex and involves a strategy which combines experiment with semiempirical and DFT computations. The results support the use of DFT computations in identifying nitrogenous species bound to FeMo-co of nitrogenase turnover intermediates and indicate that 14N quadrupole parameters from nitrogenase intermediates will provide a strong indication of the nature of the bound nitrogenous species. Comparison of the large 14N hyperfine couplings measured here with that of a hydrazine-derived species bound to FeMo-co of a trapped nitrogenase intermediate suggests that the ion(s) are not high spin and/or that the spin coupling coefficients of the coordinating cofactor iron ion(s) in the intermediate are exceptionally small.  相似文献   

19.
The syn coordination of histidine residues at the active sites of several carboxylate-rich non-heme diiron enzymes has been difficult to reproduce with small molecule model compounds. In this study, ligands derived from 1,8-naphthyridine, phthalazine, and 1,2-diethynylbenzene were employed to mimic this geometric feature. The preassembled diiron(II) complex [Fe(2)(micro-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(THF)(2)] (1), where Ar(Tol)CO(2)(-) is the sterically hindered carboxylate 2,6-di(p-tolyl)benzoate, served as a convenient starting material for the preparation of iron(II) complexes, all of which were crystallographically characterized. Use of the ligand 2,7-dimethyl-1,8-naphthyridine (Me(2)-napy) afforded the mononuclear complex [Fe(O(2)CAr(Tol))(2)(Me(2)-napy)] (2), whereas dinuclear [Fe(2)(micro-DMP)(micro-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(THF)] (3) resulted when 1,4-dimethylphthalazine (DMP) was employed. The dinuclear core of compound 3 is kinetically labile, as evidenced by the formation of [Fe(O(2)CAr(Tol))(2)(vpy)(2)] (4) upon addition of 2-vinylpyridine (vpy). The diiron analogue of 4, [Fe(2)(micro-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(vpy)(2)] (5), was prepared directly from 1. When the sterically more demanding ligand 2,6-di(4-tert-butylphenyl)benzoate (Ar(4-tBuPh)CO(2)(-)) was used, mononuclear [Fe(O(2)CAr(4)(-)(tBuPh))(2)(THF)(2)] (6) and [Fe(O(2)CAr(4)(-)(tBuPh))(2)(DMP)(2)] (7) formed. The difficulty in stabilizing a dinuclear core with these simple (N)(2)-donor ligands was circumvented by preparing a family of 1,2-diethynylbenzene-based ligands, from which were readily assembled the complexes [Fe(2)(Et(2)BCQEB(Et))(micro-O(2)CAr(Tol))(3)](OTf) (15) and [Cu(2)(Et(2)BCQEB(Et))(micro-I)(2)] (16), where Et(2)BCQEB(Et) is 1,2-bis(3-ethynyl-8-carboxylatequinoline)benzene ethyl ester. The Et(2)BCQEB(Et) framework provides both structural flexibility and the desired syn nitrogen donor geometry, thus serving as a good first-generation ligand in this class.  相似文献   

20.
(mu-Hydroxo or oxo)(mu-1,2-peroxo)diiron(III) complexes having a tetradentate tripodal ligand (L) containing a carboxylate sidearm [Fe2(mu-OH or mu-O)(mu-O2)(L)2]n+ were synthesized as models for peroxo-intermediates of non-heme diiron proteins and characterized by various physicochemical measurements including X-ray analysis, which provide fundamental structural and spectroscopic insights into the peroxodiiron(III) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号