首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A logarithmic Gauss curvature flow and the Minkowski problem   总被引:1,自引:0,他引:1  
Let X0 be a smooth uniformly convex hypersurface and f a postive smooth function in Sn. We study the motion of convex hypersurfaces X(·,t) with initial X(·,0)=θX0 along its inner normal at a rate equal to log(K/f) where K is the Gauss curvature of X(·,t). We show that the hypersurfaces remain smooth and uniformly convex, and there exists θ*>0 such that if θ<θ*, they shrink to a point in finite time and, if θ>θ*, they expand to an asymptotic sphere. Finally, when θ=θ*, they converge to a convex hypersurface of which Gauss curvature is given explicitly by a function depending on f(x).  相似文献   

2.
The behavior of the posterior for a large observation is considered. Two basic situations are discussed; location vectors and natural parameters.Let X = (X1, X2, …, Xn) be an observation from a multivariate exponential distribution with that natural parameter Θ = (Θ1, Θ2, …, Θn). Let θx* be the posterior mode. Sufficient conditions are presented for the distribution of Θ − θx* given X = x to converge to a multivariate normal with mean vector 0 as |x| tends to infinity. These same conditions imply that E(Θ | X = x) − θx* converges to the zero vector as |x| tends to infinity.The posterior for an observation X = (X1, X2, …, Xn is considered for a location vector Θ = (Θ1, Θ2, …, Θn) as x gets large along a path, γ, in Rn. Sufficient conditions are given for the distribution of γ(t) − Θ given X = γ(t) to converge in law as t → ∞. Slightly stronger conditions ensure that γ(t) − E(Θ | X = γ(t)) converges to the mean of the limiting distribution.These basic results about the posterior mean are extended to cover other estimators. Loss functions which are convex functions of absolute error are considered. Let δ be a Bayes estimator for a loss function of this type. Generally, if the distribution of Θ − E(Θ | X = γ(t)) given X = γ(t) converges in law to a symmetric distribution as t → ∞, it is shown that δ(γ(t)) − E(Θ | X = γ(t)) → 0 as t → ∞.  相似文献   

3.
Suppose on a probability space (Ω, F, P), a partially observable random process (xt, yt), t ≥ 0; is given where only the second component (yt) is observed. Furthermore assume that (xt, yt) satisfy the following system of stochastic differential equations driven by independent Wiener processes (W1(t)) and (W2(t)): dxt=−βxtdt+dW1(t), x0=0, dytxtdt+dW2(t), y0=0; α, β∞(a,b), a>0. We prove the local asymptotic normality of the model and obtain a large deviation inequality for the maximum likelihood estimator (m.l.e.) of the parameter θ = (α, β). This also implies the strong consistency, efficiency, asymptotic normality and the convergence of moments for the m.l.e. The method of proof can be easily extended to obtain similar results when vector valued instead of one-dimensional processes are considered and θ is a k-dimensional vector.  相似文献   

4.
{W(x, y), x≥0, y≥0} be a Wiener process and let η(u, (x, y)) be its local time. The continuity of η in (x, y) is investigated, i.e., an upper estimate of the process η(μ, [x, x + α) × [y, y + β)) is given when αβ is small.  相似文献   

5.
Let Ω be a plane bounded region. Let U = {Uμ(P):μ(PL∞(Ω), uμ ε H22, 0(Ω) and a(P, μ(P))uμ,xx + 2b(P, μ(P))uμ,xy + c(P, μ(P))uμ,vv = ƒ(P) for P ε Ω; here we are given a(P, X), b(P, X), c(P, X) ε L(Ω × E1), ƒ(P) ε Lp(Ω) with p > 2, and our partial differential equation is uniformly elliptic. The functions μ(P) are called profiles. We establish sufficient conditions—which when they apply are constructive—that there exist a μ0 ε L(Ω) such that uμ0 (P) uμ(P) for all P ε Ω and for each μ ε L(Ω). Similar results are obtained for a difference equation and convergence is proved.  相似文献   

6.
Let (X1) and (Y2) be two Hausdorff locally convex spaces with continuous duals X′ and Y′, respectively, L(X,Y) be the space of all continuous linear operators from X into Y, K(X,Y) be the space of all compact operators of L(X,Y). Let WOT and UOT be the weak operator topology and uniform operator topology on K(X,Y), respectively. In this paper, we characterize a full-invariant property of K(X,Y); that is, if the sequence space λ has the signed-weak gliding hump property, then each λ-multiplier WOT-convergent series ∑iTi in K(X,Y) must be λ-multiplier convergent with respect to all topologies between WOT and UOT if and only if each continuous linear operator T :(X1)→(λβ,σ(λβ,λ)) is compact. It follows from this result that the converse of Kalton's Orlicz–Pettis theorem is also true.  相似文献   

7.
On Hilbert''s Integral Inequality   总被引:5,自引:0,他引:5  
In this paper, we generalize Hilbert's integral inequality and its equivalent form by introducing three parameterst,a, andb.Iff, g L2[0, ∞), then[formula]where π is the best value. The inequality (1) is well known as Hilbert's integral inequality, and its equivalent form is[formula]where π2is also the best value (cf. [[1], Chap. 9]). Recently, Hu Ke made the following improvement of (1) by introducing a real functionc(x),[formula]wherek(x) = 2/π∫0(c(t2x)/(1 + t2)) dtc(x), 1 − c(x) + c(y) ≥ 0, andf, g ≥ 0 (cf. [[2]]). In this paper, some generalizations of (1) and (2) are given in the following theorems, which are other than those in [ [2]].  相似文献   

8.
The fundamental best-possible bounds inequality for bivariate distribution functions with given margins is the Fréchet–Hoeffding inequality: If H denotes the joint distribution function of random variables X and Y whose margins are F and G, respectively, then max(0,F(x)+G(y)−1)H(x,y)min(F(x),G(y)) for all x,y in [−∞,∞]. In this paper we employ copulas and quasi-copulas to find similar best-possible bounds on arbitrary sets of bivariate distribution functions with given margins. As an application, we discuss bounds for a bivariate distribution function H with given margins F and G when the values of H are known at quartiles of X and Y.  相似文献   

9.
Let ga(t) and gb(t) be two positive, strictly convex and continuously differentiable functions on an interval (a, b) (−∞ a < b ∞), and let {Ln} be a sequence of linear positive operators, each with domain containing 1, t, ga(t), and gb(t). If Ln(ƒ; x) converges to ƒ(x) uniformly on a compact subset of (a, b) for the test functions ƒ(t) = 1, t, ga(t), gb(t), then so does every ƒ ε C(a, b) satisfying ƒ(t) = O(ga(t)) (ta+) and ƒ(t) = O(gb(t)) (tb). We estimate the convergence rate of Lnƒ in terms of the rates for the test functions and the moduli of continuity of ƒ and ƒ′.  相似文献   

10.
In this paper, we give special uniform approximations of functions u from the spaces CX(T) and C(T,X), with elements of the tensor products CΓ(T)X, respectively C0(T,Γ)X, for a topological space T and a Γ-locally convex space X. We call an approximation special, if satisfies additional constraints, namely supp vu−1(X\{0}) and (T) co(u(T)) (resp. co(u(T){0})). In Section 3, we give three distinct applications, which are due exactly to these constraints: a density result with respect to the inductive limit topology, a Tietze–Dugundji's type extension new theorem and a proof of Schauder–Tihonov's fixed point theorem.  相似文献   

11.
Let X and Y be Hausdorff topological vector spaces, K a nonempty, closed, and convex subset of X, C : K → 2Y a point-to-set mapping such that for any χ ε K, C(χ) is a pointed, closed, and convex cone in Y and int C(χ) ≠ 0. Given a mapping g : KK and a vector valued bifunction f : K × KY, we consider the implicit vector equilibrium problem (IVEP) of finding χ* ε K such that f g*), y) -int C(χ) for all y ε K. This problem generalizes the (scalar) implicit equilibrium problem and implicit variational inequality problem. We propose the dual of the implicit vector equilibrium problem (DIVEP) and establish the equivalence between (IVEP) and (DIVEP) under certain assumptions. Also, we give characterizations of the set of solutions for (IVP) in case of nonmonotonicity, weak C-pseudomonotonicity, C-pseudomonotonicity, and strict C-pseudomonotonicity, respectively. Under these assumptions, we conclude that the sets of solutions are nonempty, closed, and convex. Finally, we give some applications of (IVEP) to vector variational inequality problems and vector optimization problems.  相似文献   

12.
Let (X1Y1), (X2Y2), …, be two-dimensional random vectors which are independent and distributed as (XY). For 0<p<1, letξ(px) be the conditionalpth quantile ofYgivenX=x; that is,ξ(px)=inf{y : P(YyX=x)p}. We consider the problem of estimatingξ(px) from the data (X1Y1), (X2Y2), …, (XnYn). In this paper, a new kernel estimator ofξ(px) is proposed. The asymptotic normality and a law of the iterated logarithm are obtained.  相似文献   

13.
Let ΓX() = X, A (X), υ be a cooperative von Neumann game with side payments, where X is a nonempty set of arbitrary cardinality, A(X) the Boolean ring generated from P(X) with the operations Δ and ∩ for addition and multiplication, respectively, such that S2 =S for all S ε A (X), and with ;() = 0. The Shapley-Bondareva-Schmeidler Theorem, which states that a game of the form ΓX() = X, A (X), is weak if and only if the core of ΓX(),ζ(ΓX()), is normal, may be regarded as the fundamental theorem for weak cooperative games with side-payments. In this paper we use an ultrapower construction on the reals, , to summarize a common mathematical theme employed in various constructions used to establish the Shapley-Bondareva-Schmeidler Theorem in the literature (Dalbaen, 1974; Kannai, 1969; Schmeidler, 1967, 1972). This common mathematical theme is that the space L, comprised of finite, real linear combinations of the collection of functions, {χa : a ε A (X)}, possesses a certain extension property that is intimately related to the Hahn-Banach Theorem of functional analysis. A close inspection of the extension property reveals that the Shapley-Bondareva-Schmeidler Theorem is in fact equivalent to the Hahn-Banach Theorem.  相似文献   

14.
We prove existence and uniqueness of the solution Xεt of the SDE, Xεt = εBt + ∫t0uq −1 ε(s, Xεt) ds, where Xεt is a one-dimensional process and uε(t, x) the density of Xεt (ε > 0, q > 1). We show that the closure of (Xεt; 0 ≤ t ≤ 1) with respect to Hölder norm, when ε goes to 0, is a.s. equal to an explicit family of continuous functions. We obtain similar results, considering SDE′s where the drift coefficient is equal to ± sgn(x) u(t, x).  相似文献   

15.
In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y(μ)(t)=f(t,y(t),y(β1)(t),y(β2)(t),…,y(βn)(t)) with μ>βn>βn-1>…>β1>0, combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization.  相似文献   

16.
Let X be a real Banach space, ω : [0, +∞) → ? be an increasing continuous function such that ω(0) = 0 and ω(t + s) ≤ ω(t) + ω(s) for all t, s ∈ [0, +∞). According to the infinite dimensional analog of the Osgood theorem if ∫10 (ω(t))?1 dt = ∞, then for any (t0, x0) ∈ ?×X and any continuous map f : ?×XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all t ∈ ?, x, yX, the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has a unique solution in a neighborhood of t0. We prove that if X has a complemented subspace with an unconditional Schauder basis and ∫10 (ω(t))?1 dt < ∞ then there exists a continuous map f : ? × XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all (t, x, y) ∈ ? × X × X and the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has no solutions in any interval of the real line.  相似文献   

17.
Let·(σ(x)u)= 0 in D R3, where D is a bounded domain with a smooth boundary. Suppose that σ ≥ m> 0, σ H3(D), where H is the Sobolev space. Let the set {u, σuN} be given on Γ for all u H3/2(Γ), where uN is the normal derivative of u on Γ.  相似文献   

18.
Let S = (P, B, I) be a generalized quadrangle of order (s, t). For x, y P, x y, let (x, y) be the group of all collineations of S fixing x and y linewise. If z {x, y}, then the set of all points incident with the line xz (resp. yz) is denoted by (resp. ). The generalized quadrangle S = (P, B, I) is said to be (x, y)-transitive, x y, if (x, y) is transitive on each set and . If S = (P, B, I) is a generalized quadrangle of order (s, t), s > 1 and t > 1, which is (x, y)-transitive for all x, y P with x y, then it is proved that we have one of the following: (i) S W(s), (ii) S Q(4, s), (iii) S H(4, s), (iv) S Q(5, s), (v) s = t2 and all points are regular.  相似文献   

19.
Many interesting and important problems of best approximationare included in (or can be reduced to) one of the followingtype: in a Hilbert spaceX, find the best approximationPK(x) to anyxXfrom the setKCA−1(b),whereCis a closed convex subset ofX,Ais a bounded linearoperator fromXinto a finite-dimensional Hilbert spaceY, andbY. The main point of this paper is to show thatPK(x)isidenticaltoPC(x+A*y)—the best approximationto a certain perturbationx+A*yofx—from the convexsetCor from a certain convex extremal subsetCbofC. Thelatter best approximation is generally much easier to computethan the former. Prior to this, the result had been known onlyin the case of a convex cone or forspecialdata sets associatedwith a closed convex set. In fact, we give anintrinsic characterizationof those pairs of setsCandA−1(b) for which this canalways be done. Finally, in many cases, the best approximationPC(x+A*y) can be obtained numerically from existingalgorithms or from modifications to existing algorithms. Wegive such an algorithm and prove its convergence  相似文献   

20.
Invariant Measure for the Markov Process Corresponding to a PDE System   总被引:5,自引:0,他引:5  
In this paper, we consider the Markov process (X^∈(t), Z^∈(t)) corresponding to a weakly coupled elliptic PDE system with a small parameter ∈ 〉 0. We first prove that (X^∈(t), Z^∈(t)) has the Feller continuity by the coupling method, and then prove that (X^∈(t), Z^∈(t)) has an invariant measure μ^∈(·) by the Foster-Lyapunov inequality. Finally, we establish a large deviations principle for μ^∈(·) as the small parameter e tends to zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号