首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ge MH  Corbett JD 《Inorganic chemistry》2007,46(17):6864-6870
The ternary phase Eu3Bi(Sn1-xBix)4 ( approximately 0 < x < approximately 0.15) has been synthesized by solid-state methods at high temperature. The crystal structure of the limiting Eu3Bi(Sn3.39Bi0.61(3)) has been determined by single-crystal X-ray analysis to be isopointal with an inverse-Cr5B3-type structure [space group I4/mcm, Z = 4, a = 8.826(1) A, c = 12.564(3) A, and V = 978.6(3) A3]. The structure contains slabs of three-bonded Sn/Bi atoms as puckered eight- and four-membered rings interlinked at all vertices, and these are separated by planar layers of individual Eu and Bi atoms. In the normal (stuffed) Cr5B3-type analogue Eu5Sn3Hx, these two units are replaced by a more highly puckered network of Eu cations around isolated Sn atoms and planar layers of isolated Eu atoms and Sn dimers, respectively. Band structures of limiting models of the phase calculated by TB-LMTO-ASA methods show a metallic character and indicate that the mixed Sn/Bi occupancy in the slabs in this structure for x > 0 probably originates with the electronic advantages of the pseudogap that would occur at the electron count of the ideal Zintl phase Eu3Bi(Sn3Bi). The stability of a competing phase reduces this limit to Eu3Bi(Sn3.4Bi0.6).  相似文献   

2.
Several Bi(III) complexes are used in medicine as drugs. Bi(DO3A-Bu) has recently been proposed as a nonionic contrast agent in X-ray imaging (H(3)DO3A-Bu = 10-[2,3-dihydroxy-(1-hydroxymethyl)propyl]-1,4,7,10-tetraazacyclododecane-1,4,7,-triacetic acid). The solution equilibria and NMR structure and dynamics of Bi(DO3A-Bu) and of the similar Bi(DOTA)(-) have been investigated (H(4)DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). The stability constants were determined with the study of the competition equilibria between Br(-) ions and the ligands DOTA or DO3A-Bu for the Bi(III) by spectrophotometry. The stability constants, obtained for Bi(DOTA)(-) and Bi(DO3A-Bu), are very high, log K = 30.3 and 26.8, respectively. Potentiometric titrations indicated the dissociation of one of the protons among the three alcoholic OH groups in Bi(DO3A-Bu). The dissociation constant is log K = 7.53 (0.09) indicating that at physiological pH about 50% of the species possess -1 charge. It was shown by (1)H and (13)C NMR spectroscopy that the OH group attached to the middle carbon atom of the "butriol" side chain is coordinated to the Bi(III) and starts to deprotonate at pH > 5.5. The crystal structure of NaBi(DOTA).H(2)O shows an octacoordinated arrangement of the donor atoms around the Bi(III), with no water in the inner sphere. The crystals belong to the centrosymmetric space group C2/c. The temperature dependent (1)H and (13)C NMR spectra indicate that both Bi(DOTA)(-) and Bi(DO3A-Bu)(-) complexes are fluxional. For Bi(DOTA), the Delta(deltadeltadeltadelta) right harpoon over left harpoon Lambda(lambdalambdalambdalambda) fluxionality was identified, and on the basis of the activation parameters, a synchronous motion was suggested for the fluxional motion resulting in the change of ring conformation and of the helicity of the complex. The transition state is supposed to be more symmetrical than the initial state. The deprotonated Bi(DO3A-Bu) has a highly asymmetric NMR structure in solution, and its fluxional motion is slower than that of Bi(DOTA)(-).  相似文献   

3.
A series of new bismuth fluoroalkoxide compounds have been prepared through the treatment of 1,1,1,3,3,3-hexafluoro-2-propanol with BiAr3 (where Ar=Ph, p-Tol). Reactions were conducted without the use of any additional solvent and the reaction products distilled or extracted with non-polar or polar Lewis base solvents. Structural analyses reveal that under variable reaction conditions the interaction of BiAr3 with (CF3)2CHOH can give a mixture of bismuth complexes with varying degrees of substitution, cluster formation and aggregation. Compounds [Bi(OCH(CF3)2)3(pyr)2] () (pyr=pyridine), [Bi(OCH(CF3)2)3(thf)3] () (thf=tetrahydrofuran), [Bi2(OCH(CF3)2)3(dabco)3] () (dabco=1,4-diazabicyclo[2.2.2]octane), [PhBi(OCH(CF3)2)2]n (), [Bi2O(OCH(CF3)2)4(C7H8)]2 () (C7H8=toluene), [Bi9O7(OCH(CF3)2)13] (), [Bi2O(OCH(CF3)2)4(Et2O)]2 (), [Bi2O(OCH(CF3)2)4(thf)]2 () and [Bi2O(OCH(CF3)2)4(tmeda)2] () (tmeda=N,N,N',N'-tetramethylethylenediamine) have been fully characterised including by single crystal X-ray diffraction.  相似文献   

4.
Ternary bismuth oxyhalide crystalline nanobelts (such as Bi24O31Br10, Bi3O4Br, Bi12O17Br2, BiOCl, and Bi24O31Cl10) and nanotubes (such as Bi24O31Br10) have been synthesized by using convenient hydrothermal methods. The composition and morphologies of the bismuth oxyhalides could be controlled by adjusting some growth parameters, including reaction pH, time, and temperature. All the nanostructures were characterized by using various methods including X-ray diffraction, transmission electron microscopy, high-resolution TEM, electron diffraction, and energy-dispersive X-ray analysis. The possible reaction mechanism and growth of the crystals are discussed based on the experimental results.  相似文献   

5.
可见光响应Bi2WO6薄膜的制备与光电化学性能   总被引:2,自引:0,他引:2  
采用非晶态配合物-提拉法在ITO导电玻璃基底上制备得到Bi2WO6薄膜. 采用FE-SEM、XRD、Raman、DRS、光电流响应谱、IPCE等手段, 研究了Bi2WO6薄膜的形貌、结构、光电性能以及薄膜结构与光电性能的关系. 结果表明, 450 ℃以上煅烧可以得到Bi2WO6结晶薄膜, 薄膜由沿(131)晶面趋向生长的Bi2WO6纳米颗粒组成, 颗粒的粒度随煅烧温度的升高而增大, 同时颗粒之间的间距也相应增大. ITO/Bi2WO6薄膜电极在可见光(λ>400 nm)照射下可以产生光电流, 光电流强度与光强度线性相关; 光电流强度和光电转换量子效率受Bi2WO6薄膜结构的影响, 通过控制薄膜的煅烧温度等制备条件, 可以提高薄膜光电极的光电转换量子效率.  相似文献   

6.
Chen J  Wu LM  Chen L 《Inorganic chemistry》2007,46(2):586-591
Substrate-free bismuth nanofilms with an average thickness of 0.6 nm (sigma = +/-14.1%) and monodisperse layered Bi nanorhombuses with an average edge length of 21.5 nm (sigma = +/-14.7%) and thickness of 0.9 nm (sigma = +/-25.8%) have been successively synthesized by structure-controlling solventless thermolysis from a new layered bismuth thiolate precursor with a 31.49 A spacing. The morphologies result from self-control at an atomic level by the layered Bi(SC(12)H(25))3 crystal structure. The formation of the Bi nanofilm intermediate provides significant substantiation for this synthesis method, and detailed evidence on the conversion progress has been obtained. Both the films and the rhombuses have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), high-resolution TEM (HRTEM), and atomic force microscopy (AFM) measurements. Special UV-vis electronic absorption spectra of the nanoproducts have been studied.  相似文献   

7.
Several members of the new family A(1-x)M(4-x)Bi(11+x)Se21 (A = K, Rb, Cs; M = Sn, Pb) were prepared by direct combination of A2Se, Bi2Se3, Sn (or Pb), and Se at 800 degrees C. The single-crystal structures of K(0.54)Sn(3.54)Bi(11.46)Se21, K(1.46)Pb(3.08)Bi(11.46)Se21, Rb(0.69)Pb(3.69)Bi(11.31)Se21, and Cs(0.65)Pb(3.65)Bi(11.35)Se21 were determined. The compounds A(1-x)M(4-x)Bi(11+x) Se21 crystallize in a new structure type with the monoclinic space group C2/m, in which building units of the Bi2Te3 and NaCl structure type join to give rise to a novel kind of three-dimensional anionic framework with alkali-ion-filled tunnels. The building units are assembled from distorted, edge-sharing (Bi,Sn)Se6 octahedra. Bi and Sn/Pb atoms are disordered over the metal sites of the chalcogenide network, while the alkali site is not fully occupied. A grand homologous series Km(M6Se8)m(M(5+n)Se(9+n)) has been identified of which the compounds A(1-x)M(4-x)Bi(11+x)Se21 are members. We discuss here the crystal structure, charge-transport properties, and very low thermal conductivity of A(1-x)M(4-x)Bi(11+x)Se21.  相似文献   

8.
The Bi(2)S(3) nanomaterials with various morphologies such as nanorods, nanowires, nanowire bundles, urchin-like microspheres and urchin-like microspheres with cavities have been successfully synthesized through a simple hydrothermal method. Experimental results indicate that sulfur sources play crucial roles in determining the morphologies of Bi(2)S(3) products. Moreover, formation mechanisms of different Bi(2)S(3) nanostructures are discussed based on understanding of the growth habit of Bi(2)S(3) crystal. Finally, we also studied the morphologies-dependent electrochemical and optical properties of the as-synthesized Bi(2)S(3) nanomaterials.  相似文献   

9.
Kantcheva D  Nenova P  Karadakov B 《Talanta》1972,19(11):1450-1454
The reaction between bismuth(III) and Xylenol Orange (XO) has been investigated by spectrophotometry. It has been established that bismuth(III) and Xylenol Orange form complex compounds with compositions Bi(III):XO = 1:1 (up to pH 1) and Bi(III):XO = 1:2 (above pH 1) which have absorption maxima at 550 and 500 nm respectively. The formula of the 1:1 complex is [Bi(H(3)R)] whereas the 1:2 complex can take one of the following forms: [Bi(H(4)R)(2)](1-), [Bi(H(4)R)(H(3)R)](2-) and [Bi(H(3)R)(2)](3-). If the values for pK(Bi(H(3)R)) and pK(Bi(H(3)R)(2)) respectively are 9.80 +/- 0.03 and 15.53 +/- 0.03 at a constant ionic strength of 1.0.  相似文献   

10.
Chai WX  Wu LM  Li JQ  Chen L 《Inorganic chemistry》2007,46(4):1042-1044
Two novel silver iodobismuthates have been obtained: (Et4N)2n-[Bi2Ag2I10]n (1) with one-dimensional infinite chains built from bimetallic tetranuclear units and (Et4N)2n[Bi4Ag2I16]n (2) with a two-dimensional 44 grid assembly of the tetranuclear Bi4I16 subunits as nodes and Ag atoms as linkages. Their optical band gaps, 2.05 and 1.93 eV, fit nicely in a size correlation of the Bi/I subunit, which is further supported by the density functional theory studies.  相似文献   

11.
Dikarev EV  Li B 《Inorganic chemistry》2004,43(11):3461-3466
Bismuth(II) trifluoroacetate (1), the first inorganic salt of bismuth in oxidation state +2, has been obtained in its pure, unstabilized form. Several synthetic routes suggested for the isolation of the new compound include (i) mild oxidation of elemental bismuth with some metal trifluoroacetates, e.g., Ag(I) and Hg(II); (ii) mild reduction of bismuth(III) trifluoroacetate with metals, such as Zn; (iii) comproportionation reaction between Bi and Bi(O(2)CCF(3))(3). The last approach gives the title compound 1 in quantitative yield as a sole product. Bismuth(II) trifluoroacetate has been characterized by NMR, IR, and UV-vis spectroscopy as well as by single-crystal X-ray diffraction. Crystallographic study reveals the dinuclear paddle-wheel structure for diamagnetic molecules Bi(2)(O(2)CCF(3))(4). The Bi-Bi bond distances in dimetal units of 1 are averaged to 2.9462(3) A, and there are no axial intermolecular contacts between these units in the solid state. The compound is volatile and exists in vapor phase up to 220 degrees C when it disproportionates back to Bi(0) and Bi(III) species, i.e., by the reverse of the synthetic route iii. In contrast, the solution chemistry is quite limited: the bismuth(II) trifluoroacetate is decomposed by the majority of common solvents, but it can be stabilized by aromatic systems. The dibismuth unit has been shown to be preserved in the latter solvents and can be crystallized out in a form of pi-adducts with arenes. Two such adducts, Bi(2)(O(2)CCF(3))(4).(C(6)H(5)Me) (2) and Bi(2)(O(2)CCF(3))(4).(1,4-C(6)H(4)Me(2))(2) (3), have been isolated as single crystals and characterized by X-ray diffraction techniques. In the structures of both 2 and 3, the bismuth(II) centers exhibit weak eta(6)-coordination to aromatic rings.  相似文献   

12.
This article describes a facile solvothermal method by using mixed solvents for the large-scale synthesis of Bi(2)S(3) nanoribbons with lengths of up to several millimeters. These nanoribbons were formed by a solvothermal reaction between Bi(III)-glycerol complexes and various sulfur sources in a mixed solution of aqueous NaOH and glycerol. HRTEM (high-resolution transmission electron microscopy) and SAED (selective-area electron diffraction) studies show that the as-synthesized nanoribbons had predominately grown along the [001] direction. The Bi(2)S(3) nanoribbons prepared by the use of different sulfur sources have a common formation process: the initial formation of NaBiS(2) polycrystals, which serve as the precursors to Bi(2)S(3), the decomposition of NaBiS(2), and the formation of Bi(2)S(3) seeds in the solution through a homogeneous nucleation process; the growth of Bi(2)S(3) nanoribbons occurs at the expense of NaBiS(2) materials. The growth mechanism of millimeter-scale nanoribbons involves a special solid-solution-solid transformation as well as an Ostwald ripening process. Some crucial factors affect nanoribbon growth, such as, solvothermal temperature, volume ratio of glycerol to water, and the concentration of NaOH; these have also been discussed.  相似文献   

13.
Russian Journal of Coordination Chemistry - Complexes (HTMP)4[Bi4I16] · 2H2O · 2(CH3)2CO (I) and (HTMP)3[Bi5I18] · 5THF (II) have been synthesized by the reactions of BiI3 and...  相似文献   

14.
A new quasi-one-dimensional compound Ni(8)Bi(8)SI has been synthesized and its crystal structure determined from single-crystal X-ray diffraction data. The structure of Ni(8)Bi(8)SI consists of [(1)infinityNi(8)Bi(8)S] columns separated by iodine atoms. Conductivity and magnetic susceptibility measurements (down to 4.2 K) show that Ni(8)Bi(8)SI is a one-dimensional metal and exhibits Pauli paramagnetic properties. These observations are in good agreement with the results from electronic structure calculations. An analysis of the chemical bonding employing difference electron charge density maps reveals strong multicenter Ni-Bi bonds and pair Ni-S interactions within the [(1)infinityNi(8)Bi(8)S] columns. Only electrostatic interactions are inferred between the columns and iodine atoms.  相似文献   

15.
A novel polyaniline/Bi(2)SnTiO(7 )composite polymer was synthesized by chemical oxidation in-situ polymerization method and sol-gel method for the first time. The structural properties of novel polyaniline/Bi(2)SnTiO(7) have been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray spectrometry. The lattice parameter of Bi(2)SnTiO(7) was found to be a = 10.52582(8) ?. The photocatalytic degradation of methylene blue was realized under visible light irradiation with the novel polyaniline/Bi(2)SnTiO(7) as catalyst. The results showed that novel polyaniline/Bi(2)SnTiO(7 )possessed higher catalytic activity compared with Bi(2)InTaO(7) or pure TiO(2) or N-doped TiO(2) for photocatalytic degradation of methylene blue under visible light irradiation. The photocatalytic degradation of methylene blue with the novel polyaniline/Bi(2)SnTiO(7) or N-doped TiO(2) as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01504 or 0.00333 min(-1). After visible light irradiation for 220 minutes with novel polyaniline/Bi(2)SnTiO(7 )as catalyst, complete removal and mineralization of methylene blue was observed. The reduction of the total organic carbon, the formation of inorganic products, SO(4)2- and NO(3-), and the evolution of CO(2) revealed the continuous mineralization of methylene blue during the photocatalytic process. The possible photocatalytic degradation pathway of methylene blue was obtained under visible light irradiation.  相似文献   

16.
Two new oxides have been unambiguously identified as Bi2Tc2O7-delta with delta = 0.14(1) and Bi3TcO8 through X-ray absorption near-edge structure spectroscopy and neutron powder diffraction. The compound Bi2Tc2O7-delta has a cubic pyrochlore-type structure with a = 10.4746(1) A, space group Fd3m (origin choice 2), and Z = 8. The compound Bi3TcO8 is also cubic, a = 11.5749(1) A, space group P2(1)3, Z = 8, and has a fluorite-related crystal structure. In Bi2Tc2O7-delta the Tc(IV) cations are octahedrally coordinated, whereas in Bi3TcO8 the Tc(VII) cations are tetrahedrally coordinated. A third new phase, probably Bi3Tc3O11, could not be obtained pure, but preliminary X-ray powder diffraction data affords a primitive cubic lattice with a = 9.3433(1) A. On the basis of structural similarities between Bi2Tc2O7-delta and closely related oxides, Bi2Tc2O7-delta is expected to be a metallic oxide with Pauli paramagnetism. Electronic structure calculations of both Bi2Tc2O7-delta and Bi3TcO8 further support metallic conductivity in the former and insulating behavior in the latter. The inert pair effect of the Bi cations on the crystal structures of Bi2Tc2O7-delta and Bi3TcO8 is also described. In addition, calculations of the valence electron localization function for Bi2Tc2O7-delta and Bi3TcO8 provide further visualization of the Bi 6s(2) lone pair electrons in the real space of the crystal structures.  相似文献   

17.
电沉积Bi2Te3基薄膜的电化学阻抗谱研究   总被引:1,自引:0,他引:1  
林青含  邱丽琴  程璇  周健 《化学学报》2012,70(10):1173-1178
以不锈钢为基底,利用电化学沉积方法制备Bi2Te3基薄膜材料,并采用X射线衍射技术、电子探针微观分析等方法对薄膜进行结构和成分表征,通过电化学阻抗谱技术对不锈钢表面Bi2Te3的电化学沉积机理进行了初步探讨.结果表明Bi-Te和Bi-Te-Se体系具有相似的电化学沉积机理,即Bi3+和2HTeO+或H2SeO3首先被还原为Bi单质和Te或Se单质,然后Bi单质与Te或Se单质反应生成Bi2Te3基化合物,而Bi-Sb-Te体系中,2HTeO+首先被还原为Te单质,生成的Te再与Bi3+和Sb(III)反应生成Bi2Te3基化合物,三种体系的沉积都受电化学极化控制.  相似文献   

18.
We describe the unique structural and electronic arrangement in the heptanuclear polyiodobismuthate [Bi(7)I(24)](3-) which displays striking similarities with the Anderson-type structures found in polyoxometalates. This main group element anion is part of the complex [Bi(OAc)(2)(thf)(4)](3)[Bi(7)I(24)] (1) which has been characterized by X-ray crystallography. We investigated the structure, stability, and bonding of [Bi(7)I(24)](3-) using relativistic dispersion-corrected density functional theory in combination with a quantitative energy decomposition and electron localization function analysis in order to better understand the main features of this isopolyanion. A comparative analysis of the properties of [Bi(7)I(24)](3-) and previously reported high-nuclearity [Bi(n)X(3n+m)](m-) anions, in the gas phase and in solution, has been performed, in the latter case to track the macroscopic solvent effects. [Bi(7)I(24)](3-) is the largest building block in the class of trianionic iodobismuthates and the sole heptanuclear framework in the family of iodobismuthates.  相似文献   

19.
Two polymorphs of the new cluster compound [Ru(2) Bi(14) Br(4) ](AlCl(4) )(4) have been synthesized from Bi(24) Ru(3) Br(20) in the Lewis acidic ionic liquid [BMIM]Cl/AlCl(3) ([BMIM](+) : 1-n-butyl-3-methylimidazolium) at 140?°C. A large fragment of the precursor's structure, namely the [(Bi(8) )Ru(Bi(4) Br(4) )Ru(Bi(5) )](5+) cluster, dissolved as a whole and transformed into a closely related symmetrical [(Bi(5) )Ru(Bi(4) Br(4) )Ru(Bi(5) )](4+) cluster through structural conversion of a coordinating Bi(8) (2+) to a Bi(5) (+) polycation, while the remainder was left intact. Both modifications have monoclinic unit cells that comprise two formula units (α form: P2(1) /n, a=982.8(2), b=1793.2(4), c=1472.0(3)?pm, β=109.05(3)°; β form: P2(1) /n, a=1163.8(2), b=1442.7(3), c=1500.7(3), β=97.73(3)°). The [Ru(2) Bi(14) Br(4) ](4+) cluster can be regarded as a binuclear inorganic complex of two ruthenium(I) cations that are coordinated by terminal Bi(5) (+) square pyramids and a central Bi(4) Br(4) ring. The presence of a covalent Ru?Ru bond was established by molecular quantum chemical calculations utilizing real-space bonding indicator ELI-D. Structural similarity of the new and parent cluster suggests a structural reorganization or an exchange of the bismuth polycations as mechanisms of cluster formation. In this top-down approach a complex-structured unit formed at high temperature was made available for low-temperature use.  相似文献   

20.
Two new bearing Bi(Ⅲ)supramolecular compounds[Bi(pydcH)3(Bi(pydcH)(pydcH2)(pydc)(Bi(pydcH)(pydcH2)(pydc)](1)and{[Bi(pydcH)3]·(H2O)5(Dmap)}2(2)have been successf...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号