首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
g-C3N4是一种新型的稳定的半导体光催化材料,它可以通过热缩聚法、固相反应法、电化学沉积法和溶剂热法等制备.g-C3N4禁带宽度约为2.7 eV,吸收边在460 nm左右,具有合适的导带位置,可用作可见光响应制氢的光催化材料,但在实际应用中g-C3N4光催化性能较低,其原因可归纳为:(1)g-C3N4在吸收光子产生电子和空穴对后,光生载流子的传输速率较慢,容易在体相或表面复合,致使g-C3N4的量子效率较低;(2)材料在合成过程中易于结块,使g-C3N4的比表面积远小于理论值,严重削弱了g-C3N4光催化材料的制氢性能.目前已有很多关于g-C3N4改性的报道,但一些方法对材料的处理过程耗时较长或者合成过程较难控制.用助剂改性是提高光催化制氢活性的半导体材料的主要策略之一.合适的助剂可改进电荷分离和加速表面催化反应,从而提高光催化剂的制氢活性.虽然稀有金属或贵金属,如铂、金和银可大大提高g-C3N4的制氢速率,但由于其昂贵和稀缺性,因而应用严重受限.因此,开发成本低、储量丰富、高性能助剂来进一步提高制氢性能具有重要意义.NiS2来源丰富、价格低廉.它可在酸性和碱性的环境保持相对较高的稳定性,且其表面电子结构表现出类金属特性.但它较难与半导体光催化剂形成强耦合和界面,通常需要水热等条件下合成.实验表明,g-C3N4表面存在着大量的含氧官能团及未缩合的氨基基团,为表面接枝提供了丰富的反应活性位点,因而可利用g-C3N4表面均匀分布的含氧官能团等和Ni2+结合,再原位与S2?反应,从而在g-C3N4上负载耦合紧密的NiS2助剂,进一步提高复合材料的光催化制氢活性.本文采用低温浸渍法制备了NiS2/g-C3N4光催化剂.NiS2助剂在温和的反应条件下与g-C3N4光催化剂复合,可以防止催化剂结构的破坏,同时使得助剂均匀地分散,并紧密结合在催化剂表面,从而大大提高光催化剂的制氢性能.该样品制备过程为:(1)通过水热处理制备含氧官能团和较大比表面积的g-C3N4;(2)添加Ni(NO3)2前驱体后,Ni2+离子由于静电作用紧密吸附在g-C3N4表面;(3)在80oC加入硫代乙酰胺(TAA),可在g-C3N4的表面紧密和均匀形成助剂NiS2.表征结果证实成功制备NiS2纳米粒子修饰的g-C3N4光催化剂.当Ni含量为3 wt%,样品表现出最大的制氢速率(116μmol h?1 g?1),明显高于纯g-C3N4.此外,对NiS2/g-C3N4(3 wt%)的样品进行光催化性能的循环测试结果表明:该样品在可见光照射下可以保持一个稳定的、有效的光催化制氢性能.根据实验结果,我们提出一个可能的光催化机理:即NiS2促进了物质表面快速转移光生电子,使g-C3N4光生电荷有效分离.基于NiS2具有成本低和效率高的优点,因而有望广泛应用于制备高性能的光催化材料.  相似文献   

2.
本文通过将Cu~(2+)掺入g-C_3N_4结构中成功制备了Cu/g-C_3N_4光催化剂,并进一步优化其光催化性能。同时,采用多种表征方法对Cu/g-C_3N_4光催化剂的结构、形貌、光学和光电性能进行了分析。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明制备的光催化剂为Cu/g-C_3N_4,且Cu的价态为+2。在可见光照射下,研究了不同铜含量的Cu/g-C_3N_4和gC_3N_4光催化剂的光催化活性。实验结果表明,Cu/g-C_3N_4光催化剂的降解能力显著高于纯相的g-C_3N_4。N_2吸附-解吸等温线表明,Cu~(2+)的引入对g-C_3N_4的微观结构影响不大,说明光催化活性的提高可能与光生载流子的有效分离有关。因此,Cu/g-C_3N_4光催化降解RhB和CIP性能的提升可能是由于Cu~(2+)可以作为电子捕获陷阱从而降低了载流子的复合速率。通过光电测试表明,在g-C_3N_4中掺入Cu~(2+)可以降低g-C_3N_4的电子空穴复合速率,加速电子空穴对的分离,从而提高了其光催化活性。自由基捕获实验和电子自旋共振(ESR)结果表明,超氧自由基(O_2~(·-))、羟基自由基(·OH)和空穴的协同作用提高了Cu/g-C_3N_4光催化剂的光催化活性。  相似文献   

3.
氢气是一种可替代传统燃料的理想清洁能源,利用光催化技术分解水制氢是制取氢气的有效途径之一。无机半导体光催化材料具有较高的活性和稳定性,且原料丰富,易加工改性.目前针对光催化技术的应用,大量的研究工作都集中在开发可见光响应光催化剂,以提高对可见光的利用率.同时,非金属聚合物半导体因其特殊的光电性质,在光催化应用研究中越来越受到关注,如庚嗪基微孔聚合物(HMP)和共价三嗪基骨架(CTF).石墨相碳化氮(g-C_3N_4)是一种典型非金属二维聚合物半导体,被认为是一种非常有价值的光催化材料.然而,其较低的光生电子的传输效率限制了其实际应用,因此诸多研究对g-C_3N_4的物理化学结构进行优化,如半导体耦合、共聚合、纳米结构设计和掺杂.非金属掺杂是一种有效的方法,由于原子电负性差异引起的电荷分离可有效改善载流子传输效率,且保持半导体的非金属性质.通过O,B,P和S等掺杂可以扩大可见光响应范围,并调节能带位置以改善光催化活性.除了常见的单一非金属掺杂,金属和非金属元素或多非金属元素共掺杂的办法同样可提高g-C_3N_4的光催化性能.本工作通过两步法对双氰胺、尿素和碘化1-乙基-3-甲基咪唑的混合物直接热聚合,合成C-I共掺杂的多孔g-C_3N_4,其在可见光照射下表现出较高的产氢活性和稳定性.采用X射线衍射(XRD)、X射线光电子能谱(XPS)、荧光光谱(PL)和电化学实验等方法对多孔掺杂g-C_3N_4结构进行详细表征和分析.在助催化剂Pt和电子牺牲剂(三乙醇胺)存在的条件下,采用可见光(400 nm)照射分解水产氢的方法评价其光催化活性.结果表明,后热处理和碘离子液掺杂对g-C_3N_4材料的结构和性能具有较大影响.C-I共掺杂和后热处理使催化剂产物颗粒尺寸减小,形成多孔片层状紧密堆积,比表面积和孔隙率显著增加,吸收带边发生蓝移.后热处理使样品层间距减小,聚合度增加,有利于电荷传输,C-I共掺杂后出现更多的缺陷,但没有改变其层状堆积的特性.XPS结果表明,样品中碘元素以I~-和I~(5+)的形式存在,改性后催化剂C/N比明显增加,sp~2芳环N含量增加,表面氨基含量降低,表明后热处理和C-I共掺杂没有改变多孔g-C_3N_4的基本骨架,共轭结构更加完善.PL和光电流结果表明,改性后样品的PL强度均显著降低,并且随着掺杂量的增加而逐渐降低,表明共掺杂可抑制光生电荷的复合.电化学测试结果表明,后热处理和C-I共掺杂的样品界面电荷转移电阻降低,导电率和电荷迁移率增加,从而有助于提高光催化性能.光解水产氢性能测试表明,后热处理和C-I共掺杂有利于催化剂产氢速率的提高,改性后CNIN_(0.2)的产氢速率达168.2μmol/h,是纯氮化碳的9.8倍.经过多次循环测试,其产氢性能保持稳定而没有显著下降,表明其产氢稳定性较好.  相似文献   

4.
以葡萄糖为原料,采用水热法制备碳球,并采用湿化学法制备了碳球修饰的g-C_3N_4.其光催化降解2,4-二氯苯酚和光催化水产氢性能的测试结果表明,适量碳球的修饰可提高g-C_3N_4光催化降解2,4-二氯苯酚和光催化水产氢的活性.表面光电压谱、光致发光谱和光电化学测试结果表明,碳球修饰提高g-C_3N_4光催化活性的机制在于修饰在g-C_3N_4表面的碳球具有较好的导电性,可促进g-C_3N_4光生电子的转移,从而改善g-C_3N_4光生载流子的分离.  相似文献   

5.
以合成的g-C_3N_4纳米片和Ag/TiO_2空心微球为原料,采用机械搅拌的方法构筑了g-C_3N_4/Ag/TiO_2三元复合光催化剂。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见光漫反射(UV-Vis DRS)和光致发光光谱(PL)对g-C_3N_4/Ag/TiO_2进行了表征。研究表明,g-C_3N_4/Ag/TiO_2是由Ag/TiO_2微球和g-C_3N_4纳米片复合而成的。与TiO_2相比,其可见光响应范围延长,光生载流子的分离速率加快。在室温下,用降解罗丹明B的反应考察了g-C_3N_4/Ag/TiO_2的可见光催化活性。研究表明,光照180 min时,g-C_3N_4(0.5%)/Ag/TiO_2显示了最高的光催化活性(91.9%),分别是TiO_2和Ag/TiO_2的7.5和1.8倍。光催化活性的提高与合理的异质结构建和Ag的导电性能有关。  相似文献   

6.
有机光催化剂以其适宜的氧化还原能带、低成本、高化学稳定性、分子结构和电子结构的可调控性而备受关注。PDI-Ala(N,N’-二(丙酸)-苝-3,4,9,10-四羧酸二亚胺)是一种新型的有机光催化剂,具有较强的可见光响应、低价带位置、强氧化能力等特点。然而,低的光生电荷转移速率和高的载流子复合率限制了它的应用。由于g-C_3N_4存在芳香杂环结构且PDI-Ala的刚性平面结构存在着离域大π键,g-C_3N_4和PDI-Ala可以通过π–π相互作用和N―C键紧密结合。通过硫掺杂g-C_3N_4合成了S-C_3N_4,其能带结构相比于g-C_3N_4更能与PDI-Ala相匹配。电子离域效应、内建电场和新形成的界面化学键共同促进了PDI-Ala与S-C_3N_4之间光生载流子的分离与迁移。因此,采用原位自组装的方法制备了一种由有机半导体PDI-Ala和S-C_3N_4组成的S型(阶梯型)异质结光催化剂。在制备过程中,PDI-Ala通过横向氢键和纵向π–π堆积自组装成超分子。采用X射线衍射(XRD)、透射电子显微镜(TEM)、能谱仪(EDS)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UVVis-DRS)、电化学阻抗谱(EIS)、Mott-Schottky曲线(MS)等多种表征方法,对PDI-Ala/S-C_3N_4光催化剂的晶体结构、形貌、价态、光学性能、稳定性和能带结构进行了系统的分析和研究;利用密度泛函理论(DFT)计算了材料的功函数和界面耦合特性。研究了合成的光催化剂在H2O2生产中的光催化活性以及在可见光照射下对四环素(TC)和对硝基苯酚(PNP)的降解作用。该S型异质结具有能带匹配和紧密的界面结合,加速了分子间的电子转移,拓宽了异质结的可见光响应范围。此外,在PDI-Ala/S-C_3N_4光催化降解反应过程中,产生并积累了多种活性物种(h~+、·O_2~-和H_2O_2)。因此,PDI-Ala/SC_3N_4异质结在降解TC、PNP和H_2O_2生产方面表现出更强的光催化性能。在可见光照射下,30%PDI-Ala/S-C_3N_4样品在90 min内去除了90%的TC,H_2O_2的产率为28.3μmol·h~(-1)·g~(-1),分别是PDI-Ala的2.9倍和S-C_3N_4的1.6倍。结果表明,由苝二酰亚胺(PDIs)基超分子和S-C_3N_4组成的全有机光催化剂可有效地用于降解有机污染物和生产H_2O_2。本研究不仅为全有机S型异质结的设计提供了一种新的策略,而且为理解具有有效界面键合的异质结构催化剂的构效关系提供了新的见解和参考。  相似文献   

7.
日渐严重的能源短缺和环境失衡问题已经阻碍了人类社会的进一步和长远可持续发展。能够将太阳能转化为可储存化学能的半导体基光催化技术被广泛的理解为一种经济和清洁的解决方式,比如光催化分解水。虽然被认为是有前途的光催化剂,g-C_3N_4低的比表面积极大地限制了其光催化性能。大孔-介孔结构可以为物质的传输和光的充分利用提供有效通道,从而提高光催化反应效率。本文中,具有反蛋白石(IO)结构的g-C_3N_4合理地通过紧密堆积的SiO_2作为模板来制备得到。并且显示出超高比表面积(450.2 m~2·g~(-1)),表现出更好的光催化产氢速率(21.22μmol·h~(-1)),约为体相g-C_3N_4 (3.65μmol·h~(-1))的六倍。相对于体相g-C_3N_4,IO g-C_3N_4表现了更好的可见光吸收能力,这得益于3D多孔结构的多重光散射效应。同时,较低的荧光强度、更长的荧光寿命、更小的Nyquist半圆环和更强的光电流响应协同地抑制了光生载流子的复合,降低了界面电荷传输的电阻,促进了光生电子的形成。此外,氮空位的存在能够增强局部电子密度,氮气吸-脱附测试揭示了IO g-C_3N_4中存在丰富的中孔和大孔,高比表面积暴露更多的活性边界和催化中心。正如光学性质、电子顺磁共振和电化学表征结果所揭示的那样,那些有利因素,包括增强的光利用率、提高的光生电荷的分离、延长的荧光寿命都赋予具有反蛋白石结构的IO g-C_3N_4优越的光催化性能。这项工作为结构设计和光催化性能调制做出了重要贡献。  相似文献   

8.
本文通过水热法合成球状Bi_2MoO_6,采用热处理法复合Bi_2MoO6和g-C_3N_4,制备出不同质量比例的g-C_3N_4/Bi_2MoO_6复合型光催化剂.利用X射线衍射、扫描电子显微镜、紫外-可见分光光度计、光致发光光谱仪等技术对所制备的光催化剂进行基本物性表征,分析了样品的微观结构、尺寸形貌和光学性质.g-C_3N_4与Bi_2MoO_6之间理想匹配的能带结构促进了光生载流子转移,进而提升光生电子和空穴的分离率,达到提高光催化活性的目的.g-C_3N_4/Bi_2MoO_6复合材料在可见光下展现出对罗丹明B高效的降解活性,其中Bi_2MoO_6与g-C_3N_4质量比为10%时展示出最佳的光催化降解性能,其降解速率分别为纯g-C_3N_4和Bi_2MoO_6的6.5和3.3倍.  相似文献   

9.
近年发展起来的低能耗、高效率的光催化技术为解决环境污染和能源短缺等问题提供了新途径.在众多光催化材料中,非金属石墨相氮化碳(g-C_3N_4)半导体材料因其化学稳定性和热稳定性优异、能带结构易调控、前驱体价格低廉等特点备受关注.然而,g-C_3N_4的光生电子-空穴对极易复合,比表面积较小,不能充分利用太阳光等,因而其光催化活性较低.目前,为了提高g-C_3N_4光催化性能,多采用金属或非金属元素掺杂、与其他物质形成异质结、与其他半导体材料进行共聚合等方式.其中,共聚合有利于调节g-C_3N_4内部电子结构,促进g-C_3N_4光生载流子的分离与迁移,而且具有高度离域π-π*共轭结构的导电聚合物更适合与g-C_3N_4进行共聚合,从而进一步提高g-C_3N_4的光催化性能.本文采用原位聚合法制备合成了导电聚吡咯(PPy)与g-C_3N_4的复合材料,并以10 mg L.1亚甲基蓝(MB)作为目标污染物评价其可见光催化性能.经X射线衍射、扫描电镜、透射电镜、比表面积、紫外-可见光谱等一系列表征分析可知,PPy/g-C_3N_4复合物(002)晶面衍射峰强度较g-C_3N_4减弱,表明PPy抑制了g-C_3N_4晶型生长,但未影响其晶型结构.不规则薄片状g-C_3N_4表面均匀地负载有非晶态PPy颗粒,复合物微观形貌发生变化.PPy与g-C_3N_4共轭芳香环层间堆积形成的介孔、大孔孔径和孔容积均增加,比表面积增大了7 m2 g.1,使目标污染物能与光催化剂表面活性物质充分接触反应.同时,PPy具有较强吸光系数,对可见光能完全吸收;PPy/g-C_3N_4复合物的可见光吸收边带发生红移,呈现出较g-C_3N_4更强的可见光吸收能力,提高对可见光的利用效率.光催化降解MB实验结果表明,在可见光(12 W LED灯)照射2 h后,含有0.75 wt%PPy的复合样品0.75PPy/g-C_3N_4表现出最佳光催化活性,MB降解效率为99%;且污染物光催化降解过程符合准一级动力学,反应速率常数(0.03773 min~(-1))约为同条件下g-C_3N_4(0.01284 min~(-1))的3倍.自由基捕获测试实验表明,g-C_3N_4和0.75PPy/g-C_3N_4均产生了·O~2~-自由基,但后者的·O2~-信号更强.这是因为PPy也可吸收可见光并激发出电子,该电子转移到g-C_3N_4导带,再与其本身的电子共同与O2反应生成·O_2-.然而只有0.75PPy/g-C_3N_4在光催化过程中产生了·OH自由基,是由于g-C_3N_4的价带(+1.4 eV)较H_2O/·OH(+2.38 eV vs.NHE)和OH~-/·OH(+1.99 eV vs.NHE)小,此价带上的h~+不能与H_2O和OH~-反应生成·OH,而是由生成的·O_2~-再与e~-和H~+反应产生,即·O_2~-+2H+2e~-CB→·OH+OH~-.本文最后分析了以·O_2~-和·OH作为主要活性物质的PPy/g-C_3N_4复合物光催化降解污染物的反应机理,PPy具有强导电性,可作为光生电子和空穴的传输通道,抑制其在g-C_3N_4表面的复合.  相似文献   

10.
采用简单的水热法制得CdS纳米棒,采用溶剂热法制得g-C_3N_4/CdS纳米棒复合光催化剂(1),其结构和性能经SEM,XRD和UV-Vis(DRS)表征。探究了1在可见光作用下光催化降解模拟有机污染物甲基橙的性能。结果表明:在可见光作用下,与纯CdS纳米棒光催化剂比较,1的催化活性明显提高,稳定性显著增强。  相似文献   

11.
类石墨相氮化碳(g-C_3N_4)具有特殊的层状二维结构、独特的电子结构、合适的能带结构、良好的热稳定性和化学稳定性等理化性能,因而在可见光催化净化环境污染物领域广受关注.但原始块状g-C_3N_4的可见光催化活性较弱,还不能满足实际应用需求.因此,亟需开发一种高效的改性方法来提高g-C_3N_4的光催化性能.本课题组发展了一种有效的改进g-C_3N_4方法,以硫脲为前驱体,去离子水(制备样品标记为CN-W)或无水乙醇(制备样品标记为CN-E)为溶剂,通过一步高温缩聚制得具有高可见光催化性能的介孔g-C_3N_4.然而,对于不同溶剂效应原位改性g-C_3N_4及其增强可见光催化性能的机理还不清楚.因此,本文采用X射线衍射(XRD)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、荧光光谱(PL)、N_2吸附和元素分析等手段研究了去离子水和无水乙醇作为溶剂原位改性g-C_3N_4的理化性能差异及增强可见光催化性能的原因.XRD结果表明,去离子水和无水乙醇不会改变g-C_3N_4的晶体结构,但会抑制其晶体结构的生长.由TEM图像可见,因去离子水和无水乙醇在热聚合过程中产生的气泡可以作为软模板,导致CN-W和CN-E纳米片均为酥松多孔层状结构,其中CN-W更薄更小.元素分析测试结果表明,无水乙醇和硫脲在热聚合过程中导致碳自掺杂g-C_3N_4.UV-Vis DRS结果显示,CN-W和CN-E分别发生了相对的蓝移和红移现象.荧光寿命测试结果显示,CN的短荧光寿命和长荧光寿命(0.805 ns,3.269ns)明显高于CN-W(0.756 ns,3.125 ns)和CN-E(0.743 ns,2.749 ns),表明CN-W和CN-E纳米薄片可以促进光生电子的储存和往复运动,有利于光生电子的迁移.此外,通过理论计算得CN-E的电子迁移速率(1.04×10~8 s~(-1))明显快于CN-W(0.81×10~8s~(-1)),表明CN-E和CN-W都有利于光生电子的迁移猝灭.另外,BET-BJH测试结果显示,CN-W(32.73 m~2/g,0.22 cm~3/g)和CN-E(25.59 m~2/g,0.18 cm~3/g)的比表面积和孔容均显著高于未改性的g-C_3N_4(13.81 m~2/g,0.12 cm~3/g),表明溶剂和前驱体在热聚合过程中产生的H_20,C_2H_5OH,H_2S,CO_2和NH_3气体有利于层状结构和丰富孔结构的形成,因而CN-W和CN-E的比表面积和孔容显著增加.由此可见,无水乙醇和去离子水在辅助制备介孔g-C_3N_4过程中表现出不同的作用.可见光催化去除NO的测试结果表明,CN-E(48.3%)和CN-W(37.2%)的光催化活性明显高于g-C_3N_4(19.5%),CN-E和CN-W的可见光催化活性也明显优于我们以前报道的BiOBr、C掺杂TiO_2和BiOBr/C_3N_4异质结.结合表征结果,CN-E和CN-W可见光催化性能增强的原因主要有两个:(1)CN-E和CN-W增大的的比表面积和孔容有利于NO的吸附、反应中间产物的转移和提供更多的活性位点参与光催化氧化反应;(2)更薄的纳米片结构和C掺杂g-C_3N_4有利于促进光生电子的迁移,从而显著提高其光催化活性.  相似文献   

12.
陈峰  杨慧  罗玮  王苹  余火根 《催化学报》2017,(12):1990-1998
作为一种无金属的新型半导体材料,g-C_3N_4因具有稳定的物理化学性质及合适的能带结构而引起人们的关注.理论上g-C_3N_4完全满足水分解的电势条件.然而研究发现,g-C_3N_4材料本身的光催化性能并不好,这主要是由于半导体材料被光激发后生成的自由电子和空穴还没来得及到达材料表面参与反应,就在材料体相内发生复合,导致电子参与有效光催化制氢反应的几率大大降低.同时还发现,将少量的贵金属,如Pt,Au,Pd作助催化剂修饰在该半导体表面,其光催化性能明显提高.但由于这些贵金属储量非常稀少,价格昂贵,导致它们的使用受到一定限制.而Ag作为一种价格远低于Pt,Au,Pd的贵金属,也得到了广泛的研究.研究表明,金属Ag储存电子的能力很好,因此可以有效地将半导体上生成的光生电子快速转移到Ag上面去,从而达到电子空穴快速分离的目的.但是在光催化制氢过程中,Ag吸附H~+的能力较弱,致使电子与H~+反应的诱导力较弱,使得Ag释放电子的能力较差.因此可以通过提高Ag表面对H~+的吸附强度,以加速Ag的电子释放,通过表面修饰来提高Ag助剂的光催化活性.研究发现,Ag纳米粒子表面与含硫化合物之间存在很强的亲和力.硫氰根离子(SCN~–)具有很强的电负性,容易吸附溶液中H~+离子,并且也易吸附在Ag纳米粒子的表面.因此可以利用Ag与SCN~–的作用来增强Ag释放电子的能力.本文采用光还原法将Ag沉积在g-C_3N_4半导体材料表面,然后通过在制氢牺牲剂中加入KSCN溶液,利用SCN~-与Ag的亲和力来提高光生电子参与光催化反应的效率.结果表明,在SCN~-存在的情况下,g-C_3N_4/Ag的光催化制氢性能显著提高.当制氢溶液中SCN~–浓度为0.3 mmol L~(–1)时,材料的光催化制氢性能达最大,为3.89μmol h~(–1),比g-C_3N_4/Ag性能提高5.5倍.基于少量的SCN~–就能明显提高g-C_3N_4/Ag材料的光催化性能,我们提出了一个可能性的作用机理:金属银和SCN~-协同作用,即银纳米粒子作为光生电子的捕获和传输的一种有效的电子传递介质,而选择性吸附在银表面的SCN~-作为界面活性位点有效地吸附溶液中的质子以促进产氢反应,二者协同作用,加速了g-C_3N_4-Ag–SCN~-三物种界面之间电荷的传输、分离及界面催化反应速率,有效抑制了g-C_3N_4主体材料光生电子和空穴的复合,因而g-C_3N_4/Ag–SCN复合材料的光催化制氢性能提高.考虑到其成本低、效率高,SCN~–助催化剂有很大的潜力广泛应用于制备高性能的银修饰光催化材料.  相似文献   

13.
随着科学技术的不断进步和经济的快速发展,人类对自然资源的需求量越来越大,在开发利用自然资源的同时,大量的有机污染物也随之进入自然环境.这些物质不仅污染环境、破坏生态,更对人类的生活和健康带来了巨大的威胁.研究证实,半导体光催化剂在光照条件下可以破坏有机污染物的分子结构,最终将其氧化降解成CO2、H2O或其它不会对环境产生二次污染的小分子,从而净化水质.近年来,有关光催化降解有机污染物的报道日益增多.Zn O作为一种广泛研究的光催化降解材料,因其无毒、低成本和高效等特点而具有一定的应用前景.但是Zn O较大的禁带宽度(3.24 e V)导致其只能吸收紫外光部分,而对可见光的吸收效率很小,极大地制约了其实际应用.除此之外,Zn O受光激发产生的电子-空穴分离效率较低、光催化过程中的光腐蚀严重也是制约其实际应用的重要因素.为了提高Zn O的光催化活性和稳定性,本文合成了用g-C3N4修饰的氧空位型Zn O(g-C3N4/Vo-Zn O)复合催化剂,在有效调控Zn O半导体能带结构的同时,通过负载一定量的g-C3N4以降低光生电子-空穴对的复合速率和反应过程中Zn O的光腐蚀,增强催化剂的光催化活性和稳定性.本文首先合成前驱体Zn(OH)F,然后焙烧三聚氰胺和Zn(OH)F的混合物得到g-C3N4/Vo-Zn O复合催化剂,并采用电子顺磁共振波谱(EPR)、紫外-可见光谱(UV-vis)、高分辨透射电镜(HRTEM)和傅里叶变换红外光谱(FT-IR)等表征了它们的结构及其性质.EPR结果表明,Zn O焙烧后具有一定浓度的氧空位,导致其禁带宽度由3.24 e V降至3.09 e V,因而提高了Zn O对可见光的吸收效率.UV-vis结果显示,Vo-Zn O复合g-C3N4后对可见光的吸收显著增强.HRTEM和FT-IR结果均表明,g-C3N4纳米片和Vo-ZnO颗粒之间通过共价键形成了强耦合,这对g-C3N4/Vo-Zn O复合催化剂中光生载流子的传送和光生电子-空穴对的有效分离起到重要作用.可见光催化降解甲基橙(MO)和腐殖酸(HA)的实验进一步证明,g-C3N4/Vo-ZnO复合材料具有较好的光催化活性,优于单一的g-C3N4或Vo-Zn O材料.同时还发现,g-C3N4的负载量对光催化活性有显著影响,当氮化碳的负载量为1 wt%时,所制材料具有最高的光催化活性:可见光照射60 min后,MO降解率可达到93%,HA降解率为80%.复合材料光催化活性的增强一方面是因为氧空位的形成减小了Zn O的禁带宽度,使得Zn O对可见光的吸收能力大大增强;另一方面,g-C3N4和Vo-Zn O的能带符合了Z型催化机理所需的有效能带匹配,使得光生电子-空穴对得到了有效的分离,从而提高了光催化活性.降解MO的循环实验表明,g-C3N4/Vo-Zn O催化剂具有很好的稳定性且不容易发生光腐蚀.与此同时,我们对比了用不同方法制备的g-C3N4/Zn O材料的催化性能.结果显示,本文制备的g-C3N4/Vo-Zn O复合材料具有更好的降解效率.总体而言,对于降解有机污染物,g-C3N4/Vo-Zn O可能是一个更为有效可行的催化体系.此外,本文也为设计与制备其他新型光催化剂提供了一条新的思路.  相似文献   

14.
在空气中直接加热三聚氰胺和氧化石墨烯(GO)的混合物制备了g-C3N4/r GO杂化催化剂.实验结果表明,混合物中的g-C3N4保留了石墨型氮化碳原始的特征结构,g-C3N4和还原的氧化石墨烯(rG O)之间的异质结主要通过π-π作用构筑.当原料中三聚氰胺/GO的质量比是800/1时,所得催化剂对罗丹明B的催化作用最强,其一阶动力学常数是纯g-C3N4的2.6倍.这种强化作用主要是由于r GO促进了光生电子-空穴对的分离.此外,g-C3N4/r GO还表现出显著的p H值敏感特性,催化降解速率随p H的降低而增加.当p H=1.98时,其一阶动力学常数是纯g-C3N4的8.6倍.这是由于酸性条件下质子(H+)消耗掉光生电子,促进了空穴对罗丹明B的氧化作用,其中r GO充当了一个快速的光生电子转移平台.  相似文献   

15.
近年来,石墨型氮化碳(g-C_3N_4)作为一种n型半导体光催化剂材料,由于具有较好的热稳定性和化学稳定性,同时具有可调的带隙结构和优异的表面性质而备受人们关注.然而,传统的g-C_3N_4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷,制约着其光催化活性的进一步提高.因此,人们开发了多种技术对块体状g-C_3N_4材料进行改性,其中构建基于g-C_3N_4纳米薄片的异质结复合光催化材料被认为是强化g-C_3N_4载流子分离效率,进而提高其可见光催化活性的重要手段.BiOI作为一种窄带隙的p型半导体光催化剂,具有强的可见光吸收能力和较高的光催化活性,同时它与g-C_3N_4纳米薄片具有能级匹配的带隙结构.因此,基于以上两种半导体材料的特性,构建新型的BiOI/g-C_3N_4纳米片复合光催化剂材料不仅能够有效提高g-C_3N_4的可见光利用率,而且还可以在n型g-C_3N_4和p型BiOI界面间形成内建电场,极大促进光生电子-空穴对的分离与迁移效率.为此,本文通过简单的一步溶剂热法在g-C_3N_4纳米薄片表面原位生长BiOI纳米片材料,成功制备了新型的BiOI/g-C_3N_4纳米片复合光催化剂.利用X射线衍射仪(XRD),场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试.XRD,SEM和TEM结果显示,结晶完好的BiOI呈小片状均匀分散在g-C_3N_4纳米薄片表面;紫外漫反射光谱表明,纳米片复合材料的吸光性能较g-C_3N_4薄片有显著提升;瞬态光电流测试证明,复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中,BiOI/g-C_3N_4纳米片复合光催化剂显示出了优异的催化活性和稳定性,其光降解活性分别为纯BiOI和g-C_3N_4的34.89和1.72倍;自由基捕获实验发现,反应过程中的主要活性物种为超氧自由基(·O_2~-),即光生电子主导整个降解反应的发生.由此可见,强的可见光吸收能力和g-C_3N_4与BiOI界面处形成的内建电场协同促进了g-C_3N_4纳米薄片的电荷分离,进而显著提高了该复合材料的可见光催化降解活性.此外,本文初步验证了在BiOI/g-C_3N_4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的,而非"Z型转移"机制.  相似文献   

16.
利用水热法合成了一维棒状BiPO_4微晶,在此基础上采用浸渍一焙烧法进行g-C_3N_4量子点表面修饰获得新颖的g-C_3N_4/BiPO_4异质结。借助X射线衍射(XRD)、场发射扫描电镜(PE-SEM)、透射电镜(HRTEM)、能谱(EDS)、紫外-可见漫反射(UV-VisDRS)等测试手段对所得样品的相组成、形貌和谱学特征进行了表征。选择罗丹明B(RhB)和苯酚作为模型污染物研究了所得在可见光下的催化活性。结果表明,样品16%(ω/ωg-C_3N_4BiPO_4对RhB降解的速率常数分別是纯g-C_3N_4和BiPO_4的4.6倍和15倍。g-C_3N_4量子点与BiPO_4之间形成异质结,抑制了光生电子-空穴对的复合,从而提高了催化剂的活性。自由基捕获实验进一步表明,超氧负离子自由基(·O_2~-)是催化降解RhB和苯酚的主要活性物种。  相似文献   

17.
随着化石燃料的日益枯竭,能源危机已经成为一个严重的全球性问题。开发氢气等环境友好型的可再生能源来替代化石燃料已迫在眉睫。光催化水解制氢被认为是解决这一问题最有效的技术之一,贵金属(如Pt)可以作为助催化剂提高光催化体系的制氢性能,但高昂的成本限制了该技术的进一步应用。因此,开发新型、高性能、低成本的非贵金属助催化剂以替代贵金属助催化剂,对于将光催化产氢技术付诸实践具有重要意义。在此,我们以共轭聚合物(SCN)n为前驱体成功地合成了Ni_2P/类石墨碳氮化物光催化剂(Ni_2P/CN),在可见光照射下具有优异的光催化产氢性能。使用各种表征技术、光学和光电化学测试研究了这些材料的结构组成、形貌特征以及光学性质。X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)和X射线光电子能谱(XPS)结果表明了合成的Ni_2P/CN纳米复合材料具有良好的晶体结构。扫描电镜(SEM)和透射电镜(TEM)结果显示,Ni_2P/CN样品具有典型的二维层状结构,Ni_2P纳米颗粒均匀地负载在CN表面。紫外-可见漫反射光谱(DRS)结果表明,负载Ni_2P纳米颗粒有效地增强了CN对可见光的吸收能力。光致发光光谱(PL)和光电流测试结果表明,Ni_2P的负载有利于促进光生载流子的迁移和分离效率。光催化产氢实验是在可见光照射下进行的,以三乙醇胺为牺牲剂。结果表明,Ni_2P/CN复合光催化剂具有良好的光催化还原性能。性能最优的Ni_2P/CN复合材料产氢效率达到了623.77μmol·h~(-1)·g~(-1),优于以贵金属Pt作助催化剂的CN样品的产氢效率(524.63μmol·h-1·g-1)。此外,通过一系列表征、光学以及光电化学测试的分析表明,Ni_2P纳米粒子均匀地附着在CN的表面上,并且它们之间存在很强的界面效应,从而形成了抑制光生载流子重组并促进电子迁移的电子传输通道,促进电子从CN迁移至Ni_2P。此外,根据实验和表征,提出了一种可能的光催化机理。这项工作对于非贵金属取代贵金属作为光催化产氢助剂的发展具有重要意义。  相似文献   

18.
热处理氧化石墨相氮化碳(g-C_3N_4)材料产生氮缺陷、提升其光催化制氢性能的研究备受关注,但其N空位浓度高且不可控、一定程度破坏g-C_3N_4晶体结构,降低g-C_3N_4的结晶度,导致光生电子-空穴对复合率高,致使其光催化制氢效率较低。基于上述问题,本研究以二氰二胺为前驱体制备了g-C_3N_4,与不同含量的尿素混合,在空气中加热快速热处理,通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)等测试手段,对其物相组成、微观形貌、光学吸收等进行了表征,在可见光条件下对样品进行了光催化制氢性能测试,研究了尿素的加入对热处理后g-C_3N_4材料的N空位浓度、结晶度及光催化制氢性能的影响。研究表明,尿素的加入降低了N空位的浓度,且提升了其结晶度。在优化的尿素添加量下,g-C_3N_4的可见光光催化制氢速率为6.5μmol·h-1,是没有添加尿素处理的样品的3倍。该研究结果表明,利用尿素原位分解产生的NH_3,可以抑制g-C_3N_4热处理过程中氮原子的氧化程度、实现调控N空位浓度,同时提高了结晶度,最终提升了其光催化制氢性能。  相似文献   

19.
报道了一种新型Ag/Ag3PO4/g-C3N4三元复合光催化剂的制备及其半导体界面处的快速载流子分离所引起的光催化活性的显著增强效应.通过X射线衍射,扫描电子显微镜,紫外-可见吸收光谱以及光致发光光谱等就其晶体结构、形貌、组分、光学吸收以及载流子的快速分离行为进行了表征与分析.以罗丹明B作为模型化合物分子,研究发现,所制备的Ag/Ag3PO4/g-C3N4三元复合光催化剂在可见光照射下表现出比Ag3PO4以及Ag3PO4/g-C3N4二元催化剂更为优异的光催化活性.研究认为,Ag3PO4表面尺寸约为40 nm的Ag纳米粒子在可见光下受激所产生的等离子表面共振效应以及Ag3PO4与g-C3N4界面处所形成的类似异质结结构对所制备的Ag/Ag3PO4/g-C3N4三元复合光催化剂光催化活性的显著增强起到重要作用.  相似文献   

20.
以三聚氰胺为前驱体,通过热氧化刻蚀法制备多孔超薄g-C_3N_4纳米片(CNHS),将其与氯铂酸钾溶液混合后采用原位光化学还原法成功制备了CNHS负载Pt光催化剂(Pt-CNHS)。使用粉末X射线衍射、场发射扫描电子显微镜、X射线光电子能谱、透射电子显微镜、紫外可见漫反射光谱和N_2吸附-脱附测试等技术对所制备样品的结构、形貌、光吸收特性、光电化学性能和比表面积等进行系统分析。并以气相甲苯为目标降解物,研究其光催化性能。结果表明,相对于体相g-C_3N_4(CNB)和CNHS,Pt的引入可以有效增强催化剂对可见光的吸收能力、响应范围及载流子分离效率。与纯g-C_3N_4和CNHS相比,Pt-CNHS在紫外和可见光照射下均表现出更高的光催化降解气相甲苯的活性。此外,也对Pt-CNHS光催化剂在可见光照射下降解气相甲苯的反应历程做了初步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号