首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丙烷脱氢制丙烯是优化利用炼厂气和油田伴生气资源的一条重要途径.随着丙烯需求量的逐步增加,丙烷脱氢制丙烯日益受到重视.负载型PtSn/γ-Al2O3催化剂具有优良的丙烷脱氢活性和选择性,但在高温、低氢压的反应条件下,催化剂易积炭而失活.近年来,选用了微孔分子筛如ZSM-5和介孔分子筛如SBA-15和MCM-41作为PtSn催化剂的载体,结果表明,具有规整孔道结构的负载型PtSn/分子筛催化剂的丙烷脱氢反应稳定性明显优于PtSn/γ-Al2O3催化剂.SUZ-4分子筛与ZSM-5分子筛结构相似且孔径相当,所不同的是ZSM-5由十元环交叉孔道组成,而SUZ-4由十元环和八元环孔道垂直相交组成.我们用微型催化反应装置结合XRD、BET比表面积和孔体积测试、NH3吸附-程序升温脱附(NH3-TPD)、氢化学吸附、热重分析(TG)、H2程序升温还原(H2-TPR)和程序升温氧化(TPO)等多种物理化学手段研究了负载型PtSnNa/SUZ-4和PtSnNa/ZSM-5催化剂的结构和丙烷脱氢反应性能,以及这两种催化剂在丙烷脱氢反应中催化性能差异的原因.实验结果显示,在丙烷脱氢反应中,负载型PtSnNa/SUZ-4催化剂上丙烯选择性和反应稳定性明显优于PtSnNa/ZSM-5催化剂,说明载体一定程度上会影响催化剂上丙烷脱氢反应性能.XRD,BET比表面积和孔体积测试等表征手段结果表明,SUZ-4和ZSM-5的孔体积和比表面积比较接近,载体的结构又类似,且两者的积碳量也相近,故载体的基本性质和积碳量的差异不是引起催化剂性能差异的原因.NH3-TPD结果表明,H-SUZ-4的酸强度明显强于H-ZSM-5.由于浸渍法制备负载型PtSn催化剂所用前体为具有强酸性的混合溶液(H2PtCl6+SnCl4),存在于SUZ-4分子筛孔道内表面的强酸中心不利于上述前体与SUZ-4分子筛孔道内表面结合.ZSM-5分子筛孔道内表面比较弱的强酸中心,促进了催化剂前体在ZSM-5分子筛孔道内表面的分散与结合.和ZSM-5为载体的催化剂相比,PtSnNa/SUZ-4上Pt粒子大部分分散在载体的外表面,从而金属上的积碳不易引起催化剂的失活.故多孔材料上Pt的分布是影响催化活性差异的主要原因.为进一步证明多孔材料上Pt的分布是影响催化活性差异的主要原因,我们通过二苯并噻吩预处理催化剂的手段证明Pt粒子在分子筛孔内外的分布情况.由于二苯并噻吩的尺寸比较大(0.8 nm)不能进入到分子筛的孔道内(SUZ-4:0.56 nm,ZSM-5:0.56 nm),所以载体孔道外的部分Pt会被二苯并噻吩预处理而失去活性,而孔道内的Pt不会因为预处理仍具有催化活性.实验结果表明,PtSnNa/SUZ-4经过二苯并噻吩预处理后,催化活性大大降低;而PtSnNa/ZSM-5经过二苯并噻吩预处理后,催化活性几乎没有变化.说明PtSnNa/SUZ-4上Pt粒子大部分分散在载体的外表面,从而金属上的积碳不易引起催化剂的失活.  相似文献   

2.
以HZSM-5分子筛为载体, 利用分步浸渍法制得不同Na含量的PtSnNa/ZSM-5催化剂, 用于丙烷脱氢反应. 利用XRD、吡啶吸附红外光谱、NH3-TPD、氢化学吸附、TPR等手段, 研究了Na的添加对PtSn/ZSM-5催化剂物化性质的影响. 结果表明: Na的添加对PtSn/ZSM-5催化剂的反应性能影响明显. 适量Na的添加不仅降低了催化剂中的Brönsted酸中心和Lewis中强/强酸中心, 抑制了积碳的发生, 提高了催化反应的稳定性; 而且提高了催化剂表面的Pt金属裸露度, 增加了反应活性. 当Na含量为1.0%(w)时, 催化剂的丙烯选择性和收率达到最大, 反应30 h后, 丙烷转化率仍然保持很高(36.4%). 继续增加Na含量, 催化剂中的Lewis弱酸中心有所增加, 同时Sn组分易于被还原成Sn0, 丙烷裂解、氢解等副反应增加, 不利于脱氢反应的进行.  相似文献   

3.
邱安定  李恩霞  范以宁 《催化学报》2007,28(11):970-974
用微型催化反应装置结合吡啶吸附的红外光谱、NH3-程序升温脱附、热重、H2化学吸附和程序升温还原等物理化学手段研究了载体组成对负载型PtSn/ZSM-5催化剂上丙烷脱氢反应性能的影响.结果表明,负载型PtSn/ZSM-5催化剂对丙烷脱氢的催化性能与载体组成密切相关.随着ZSM-5载体中SiO2/Al2O3比的增加,催化剂表面的酸中心总量和强酸中心量逐渐减少.当SiO2/Al2O3摩尔比从45增至108时,催化剂对丙烷脱氢反应的催化活性提高,并且催化剂的积炭量下降.当SiO2/Al2O3摩尔比增至304时,Sn组分与载体ZSM-5之间的相互作用减弱,经H2还原后催化剂中Sn0物种所占的比例增加,导致催化剂H2化学吸附量和丙烷脱氢反应活性下降.  相似文献   

4.
用微型催化反应装置结合X射线衍射(XRD)、H2化学吸附、NH3吸附-程序升温脱附(NH3-TPD)和H2-程序升温还原等多种物理化学手段研究了丙烷脱氢负载型PtSnNa/SUZ-4催化剂中Na+助剂组分的作用。结果表明,Na+组分可中和SUZ-4载体表面的强酸中心、提高催化剂的Pt金属分散度、抑制脱氢产物的裂解和积炭的生成,从而提高催化剂的丙烷脱氢选择性和反应稳定性。但是过量Na+组分的存在会削弱Sn物种与载体之间的相互作用,使其易被还原,导致催化剂丙烷脱氢活性显著下降。  相似文献   

5.
用微型催化反应装置评价, 并结合X射线粉末衍射(XRD)、表面积和孔结构测试、程序升温还原(TPR)、氢化学吸附和热重分析等方法研究了负载型PtSn/γ-Al2O3, PtSn/MCM-41和PtSn/Al2O3/MCM-41催化剂的丙烷脱氢反应催化性能. 发现PtSn/Al2O3/MCM-41催化剂具有较PtSn/MCM-41催化剂高的丙烷脱氢反应活性和较PtSn/γ-Al2O3催化剂高的反应稳定性. 实验结果表明, 纯硅MCM-41载体表面的锡物种因与载体相互作用较弱故易被还原, 导致铂金属分散度和催化剂的丙烷脱氢活性较低. 用Al2O3修饰MCM-41可以增强Sn物种与Al2O3/MCM-41载体之间的相互作用, 提高PtSn/Al2O3/MCM-41催化剂铂金属分散度和丙烷脱氢催化活性. 并且, 积炭后的PtSn/Al2O3/MCM-41催化剂具有较高的铂金属表面裸露度, 故具有较高的丙烷脱氢反应稳定性. PtSn/Al2O3/MCM-41催化剂优良的丙烷脱氢催化性能可能不仅与Sn-载体Al2O3/MCM-41较强的相互作用有关, 而且与Al2O3/MCM-41载体的介孔结构有关.  相似文献   

6.
用微型催化反应装置评价,并结合X射线粉末衍射(XRD)、表面积和孔结构测试、程序升温还原(TPR)、氢化学吸附和热重分析等方法研究了负载型PtSn/γ-Al2O3,PtSn/MCM-41和PtSn/Al2O3/MCM-41催化剂的丙烷脱氢反应催化性能.发现PtSn/Al2O3/MCM-41催化剂具有较PtSn/MCM-41催化剂高的丙烷脱氢反应活性和较PtSn/γ-Al2O3催化剂高的反应稳定性.实验结果表明,纯硅MCM-41载体表面的锡物种因与载体相互作用较弱故易被还原,导致铂金属分散度和催化剂的丙烷脱氢活性较低.用Al2O3修饰MCM-41可以增强Sn物种与Al2O3/MCM-41载体之间的相互作用,提高PtSn/Al2O3/MCM-41催化剂铂金属分散度和丙烷脱氢催化活性.并且,积炭后的PtSn/Al2O3/MCM-41催化剂具有较高的铂金属表面裸露度,故具有较高的丙烷脱氢反应稳定性.PtSn/Al2O3/MCM-41催化剂优良的丙烷脱氢催化性能町能不仅与Sn-载体Al2O3/MCM-41较强的相互作用有关,而且与Al2O3/MCM-41载体的介孔结构有关.  相似文献   

7.
以两步法制备了一系列过渡金属(M=Fe, Co, Ni, Cu, Zn)修饰的树枝状介孔二氧化硅纳米粒子(DMSN)负载铂(Pt/M-DMSN)催化剂, 并对该系列催化剂进行了丙烷催化脱氢性能评价. X射线衍射(XRD)、 透射电子显微镜(TEM)、 紫外-可见漫反射光谱(UV-Vis DRS)和氢气程序升温还原(H2-TPR)表征结果表明, 不同过渡金属在DMSN载体表面分散状态不同,且与Pt的相互作用程度不同. 其中Zn-DMSN载体最有利于Pt的分散, 且反应后催化剂上积碳含量最低; Pt/Fe-DMSN催化剂中Pt与载体的相互作用力较强. 通过活性评价结果可知, Pt/Fe-DMSN催化剂表现出最优的丙烷催化脱氢性能, 丙烷初始转化率为44.2%, 反应6 h后丙烷转化率仍可达36.5%.  相似文献   

8.
丙烯作为一种重要的石油化工基础原料,传统上是从石脑油蒸汽裂解或催化裂化过程中作为副产物生产的.随着原油的枯竭和页岩气开发技术的成熟,通过乙烷蒸汽裂解制备乙烯更具吸引力并已得到广泛的工业应用,但该路线乙烯选择性高,而副产物丙烯数量有限.为满足不断增加的丙烯需求量,利用油田气和页岩气中低附加值的丙烷为原料,将其直接脱氢制丙烯(PDH)具有重要的现实意义.目前已开发成功的PDH技术采用的催化剂主要为负载PtSn型催化剂和Cr基催化剂.其中,Pt基催化剂较Cr基催化剂更加环境友好,因此得到了更广泛的应用.由于Pt元素的昂贵和稀有,制备低Pt含量和良好性能的催化剂极具吸引力.UOP Oleflex工艺开发的最新一代催化剂DEH-16仅含有0.3 wt%Pt,相对于前一代催化剂Pt含量降低30%.然而,许多文献报道,随着Pt含量的降低,催化剂的稳定性很容易恶化,降低Pt含量并保持催化剂性能仍具有一定的挑战.研究表明,含有更多Lewis酸性位点和更少Bronsted酸位点的催化剂显示出较好的丙烷脱氢活性和丙烯选择性.此外,源自缺陷位或配位不饱和位的Lewis酸性位也可为负载的金属颗粒提供锚定位点.BASF对ZrO2作为载体的丙烷脱氢催化剂进行了广泛研究,但其催化剂尚未完全商业化.有文献报道,ZrO2负载的PtSn催化剂在脱氢反应中的稳定性较差.将元素硼(B)加入到ZrO2中可以极大地抑制Bronsted酸性而提高Lewis酸量和酸强度,因此我们推测含有适量配位不饱和Zr位点的ZrO2作为PtSn丙烷脱氢催化剂载体可能具有优异的性能.载体的合成pH值对催化剂PDH性能也会有影响.然而,目前还没有硼改性的ZrO2(B-ZrO2)合成pH值对PDH催化性能影响的研究.本文研究了B-ZrO2的合成pH值(9,10和11)对PtSn/B-ZrO2在丙烷脱氢反应中催化性能的影响.Py-IR结果表明各pH值下合成的B-ZrO2均只有Lewis酸,NH3-TPD结果则表明B-ZrO2的Lewis酸量和强度随合成pH值的增加而增加.XPS结果显示,载体对Pt和Sn电子性质的影响不容忽视.由于OSC与CO氧化活性之间没有线性关系,因此Pt和Sn之间的相互作用程度在CO氧化反应中可能起主要作用,并有如下递增趋势:PtSn/B-ZrO2-9相似文献   

9.
1.前言 采用具有ZSM-5,ZSM-11和ZSM-48沸石结构的高硅沸石作为CO加氢反应的催化剂载体,有效地控制了产物分布范围。AlPO_4-5分子筛的孔道结构和表面性质决定了它同样可作为催化剂载体以代替沸石。关于AlPO_4-n分子筛的研究,目前多着重于合成和结构方面,以其作为催化剂和催化剂载体的报道较少。由于AlPO_4-n分子筛无离子交换性,致使负载金属AlPO_4-n催化剂的制备受到限制。根据“某些盐类或氧化物与高比表面载体混合,在低于熔点的适当温度下焙烧,这些盐类或氧化物在载体表面能自发分散”的原理,本文采用固相焙烧法制备了系列Fe_2O_3/AlPO_4-5催化剂并用于CO加氢反应,研究铁活性组分在AlPO_4-5分子筛表面的分散状况及催化活性。  相似文献   

10.
采用水热合成法使铁进入分子筛MFI骨架结构,成功合成出含骨架铁的分子筛Na-[Fe]-ZSM-5,并通过离子交换法负载Pt制备脱氢催化剂Pt/Na-[Fe]-ZSM-5。通过正十二烷脱氢反应,研究了该催化剂对长链烷烃脱氢制单烯烃反应的催化性能。采用N2吸附-脱附测试、X射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)、氨气程序升温脱附(NH3-TPD)、吡啶吸附的红外光谱(Py-IR)、CO化学吸附、透射电子显微镜(TEM)等不同方法对催化剂进行了表征。结果表明,通过控制骨架铁含量可调控催化剂表面酸性;含骨架铁的ZSM-5分子筛载体具有抑制负载金属晶粒长大,保持金属高分散度的作用;其负载铂催化剂Pt/Na-[Fe]ZSM-5-50具有表面弱酸中心(0.69 mmol·g^-1)和高分散Pt中心,因而具有良好的长链烷烃脱氢活性、稳定性和单烯烃选择;在转化率稳定在~20%时,TOF为4.56 s^-1,单烯烃选择性为92.7%;在实验范围内,Pt/Na-[Fe]ZSM-5催化剂表面弱酸量和脱氢反应的本征活性(TOF)均随催化剂铁含量的增加而增加。  相似文献   

11.
SBA-15负载纳米CoMoO4催化剂催化丙烷氧化脱氢制丙烯   总被引:1,自引:0,他引:1  
采用柠檬酸配位-浸渍法制备不同CoMoO4含量的系列CoMoO4/SBA-15催化剂, 通过X射线衍射、透射电镜和低温N2吸附法对样品进行了表征. 结果表明, 柠檬酸配位-浸渍法可在介孔分子筛孔道中形成高含量、均匀分散且有确定晶相的CoMoO4, 同时能够很好地保持载体的介孔结构. 与非负载的CoMoO4相比, 由柠檬酸配位-浸渍法制备的CoMoO4/SBA-15催化剂在丙烷氧化脱氢反应中具有更好的催化活性, 当CoMoO4的含量为13%(w)、反应温度为823 K时, 丙烯产率达到16.8%.  相似文献   

12.
不同孔道结构的氧化硅负载钒氧化物催化丙烷氧化脱氢   总被引:1,自引:0,他引:1  
采用固定床微型反应装置,结合催化剂的原位电子自旋共振光谱、程序升温表面反应和紫外漫反射光谱等技术,研究了丙烷氧化脱氢的介孔氧化硅负载钒氧化物催化剂的性能和表面氧物种的状态及其反应性.结果表明,催化剂载体孔结构是影响钒氧物种分散状态乃至催化性能的一个重要因素.SBA-15负载钒氧化物催化剂因具有较大的比表面积和较大的孔径,不仅具有较高的丙烷氧化脱氢催化活性,而且具有较高的丙烯选择性.复合型钒氧化物催化剂表面与V离子相连的晶格氧物种是丙烷氧化脱氢牛成内烯的主要活性物种,载体表面高度分散的钒氧物种具有较高的丙烷氧化脱氢催化活性.负载型钒氧化物催化剂晶格氧物种是丙烷氧化脱氢转化为丙稀的主要活性物种,CO_2分子可以再生钒氧化物催化剂的晶格氧物种,同时它对丙烯的深度氧化作用较弱,因此在负载型钒氧化物催化剂上CO_2氧化丙烷可高选择性地生成丙烯.  相似文献   

13.
丙烯是一种重要的化工原料,目前工业上主要来自石脑油、轻质油以及其他石油副产物的蒸汽裂解和催化裂解.这些过程能耗巨大,碳排放严重.丙烷直接脱氢制丙烯原料利用率高,副产物少,是一条更加经济环保的丙烯生产路线.Cr_2O_3-Al_2O_3催化剂因其出色的性能和低廉的价格已在工业中应用,但氧化铝表面酸位点易催化副反应及积碳的形成,从而造成催化剂失活.因此,调控载体氧化铝结构具有重要的意义.氧化铝的结构性质取决于合成条件以及焙烧过程表面羟基和水分的逐步脱除.我们课题组通过水热法合成了一系列表面粗糙的棒状氧化铝和富含五配位铝离子的片状氧化铝,以这些氧化铝为载体制备的负载型贵金属催化剂在催化反应中表现出优异的活性和稳定性.本文在前期工作基础上研究了不同焙烧温度对棒状氧化铝表面结构的影响,采用X射线衍射(XRD)、氮吸附、电镜(SEM/TEM)、氨气程序升温脱附(NH3-TPD)和紫外-可见光谱(UV-Vis)等手段表征了氧化铝结构,并探究了其对负载氧化铬催化剂上丙烷脱氢反应的影响.XRD结果表明,低温焙烧所得主要为γ相氧化铝,提高焙烧温度至900oC时出现δ相氧化铝.氧化铝氮气吸附-脱附表现出IV型等温线,随焙烧温度升高,介孔结构保持,但比表面积和孔体积呈减小趋势.电镜观察显示氧化铝为棒状结构,表面粗糙.NH_3-TPD结果表明自制氧化铝酸量低于商业氧化铝,且随焙烧温度升高酸量下降.以上结果表明焙烧温度在氧化铝性质调控过程中起重要作用.以不同焙烧温度下制得的氧化铝等体积浸渍氧化铬制得氧化铬催化剂.丙烷脱氢反应结果表明,催化剂表现出优异的稳定性和再生性能.氮吸附等温线表明新鲜催化剂为介孔结构,这有利于反应物接触活性位点,并提供抗积碳阻塞能力.对比氧化铝负载氧化铬前后的电镜照片可知,催化剂表面粗糙度降低,说明活性组分均匀分散于氧化铝粗糙表面;反应前后催化剂形貌保持不变,催化剂在反应中表现出优异的结构稳定性.UV-Vis和H_2-TPR结果表明,自制氧化铝和参比氧化铝表面的铬物种以相似配位状态存在,但铬物种在自制氧化铝表面更难还原,表现出更强的金属与载体相互作用.NH_3-TPD结果表明,自制催化剂表面酸量(64μmol NH_3 g~(–1))远低于参比催化剂(140μmol NH_3 g~(–1)).热重分析证实反应后自制催化剂积碳量明显低于参比催化剂.自制棒状氧化铝作为载体制备的氧化铬低酸催化剂可抑制积碳形成,提高丙烯选择性,在丙烷脱氢反应中表现出优异的活性和抗积碳能力.  相似文献   

14.
氮氧化物(NO_x)作为主要的大气污染物之一,给环境和人类带来一定危害,其主要源于汽车、轮船以及工厂中液态(汽油和柴油)或固态(煤)化石原料的燃烧.目前,选择性催化还原法(SCR)因技术相对成熟且经济有效,被广泛应用于氮氧化物脱除.催化剂是该技术的关键,而典型的商业钒系催化剂(V_2O_5-WO_3/TiO_2和V_2O_5-MoO_3/TiO_2)存在工作窗口温度窄(300–400 oC)、V_2O_5的生物毒性以及较高的SO_2氧化性能等缺点,因此开展高效且环境友好催化剂的研究工作迫在眉睫.近年来,锰基催化剂因其丰富的价态变化以及氧化形态而受到科研工作者的广泛关注.研究者已经对锰前驱体做了大量研究,但是关于不同锰前驱体制备得到的催化剂的活性物种组成以及催化活性往往存在着不同观点.因此进一步开展对锰前驱体研究仍有必要.同时,二氧化钛载体比表面积较小,并不是制备锰基催化剂的理想载体.分子筛载体因其比表面积大、特殊的孔道结构以及丰富的酸位等特点引起了研究者的关注.用于制备锰基催化剂的分子筛载体主要有ZSM-5,Beta,USY和SAPO等,其中ZSM-5系列催化剂是研究热点.另一方面,研究发现Beta分子筛具有良好的水热稳定性,被认为是理想的NH_3-SCR催化剂载体.研究者对比了不同金属负载的Beta分子筛与ZSM-5分子筛的催化活性,结果表明,Fe/beta的催化活性高于Fe/ZSM-5和Fe/ZSM-11;Cu/beta的催化活性与Cu/ZSM-5相当,均表现出较高的活性.而关于Mn/ZSM-5的研究已有大量文献报道,但关于Mn/beta的研究相对较少.另外,关于不同锰前驱体在Beta以及ZSM-5分子筛载体表面的物化性质差异也少有报道.本文以H/beta和H/ZSM-5分子筛作为载体,采用硝酸锰、乙酸锰和氯化锰三种前驱体,通过湿法浸渍制备了Mn/beta和Mn/ZSM-5两类NH_3-SCR催化剂,并在固定床管式反应器中对比评价了两类催化剂的催化活性.凭借氮气等温吸附/脱附(BET)、X射线衍射(XRD)、X射线荧光(XRF)、氢气程序升温还原(H_2-TPR)、氨气程序升温脱附(NH_3-TPD)以及X射线光电子能谱(XPS)等技术对催化剂进行了表征,系统分析了不同前驱体在两种载体表面形成的活性组分以及理化性质对催化性能的影响.催化剂活性评价结果表明,对于Mn/beta和Mn/ZSM-5催化剂,在220–350°C反应温度区间内,乙酸锰和硝酸锰制备的催化剂NO脱除率均在80%以上.其中Mn/beta-Ac在240°C时达到最高的NO脱除率97.5%,并且在220–350°C温度区间内保持着90%以上的活性,具有最宽的活性温度窗口.同时,在两系列锰基催化剂中,乙酸锰制备的催化剂均表现出最佳的催化活性,且对于同一种前驱体制备的催化剂,Mn/beta催化剂的NH_3-SCR活性优于Mn/ZSM-5.BET数据显示,负载锰物种之后,催化剂的比表面积和孔体积均明显减小,但相对于Mn/ZSM-5催化剂,Mn/beta催化剂仍保持着优良的织构性质.XRD、XRF及H_2-TPR结果表明,氯化锰前驱体主要产生少量的结晶Mn_3O_4并且大部分保持以MnCl_2的形式存在,这也是此类催化剂表现出较差的低温催化活性的原因.结合XPS表征分析了催化剂的表面性质.结果表明,硝酸锰前驱体主要产生结晶MnO_2和少量未分解的硝酸锰,乙酸锰前驱体主要产生高度分散的无定形MnO_2和Mn_2O_3混合物以及结晶Mn_3O_4.进一步结合NH_3-TPD分析结果以及活性评价结果可以得出:丰富的无定形MnO_x(MnO_2和Mn_2O_3)物种、较高的表面锰含量和表面活性氧基团以及适当含量的弱酸位有利于提升催化剂的低温NH_3-SCR催化活性.  相似文献   

15.
分别以β、ZSM-5和USY分子筛为载体,采用浸渍法制备了锰铈催化剂,对其低温NH_3-SCR反应性能进行了评价,并采用XRD、BET、NH_3-TPD、H_2-TPR以及XPS对催化剂进行了表征。结果表明,三种分子筛负载的锰铈催化剂均具有较好的低温NH_3-SCR反应活性,其中,Mn-Ce/USY的催化性能最好,在107℃时NOx转化率可达到90%。负载锰铈后催化剂的比表面积和孔体积均有所下降;活性组分MnOx主要以无定型态分布于催化剂表面,且在ZSM-5上检测到聚集的CeO_2。催化剂表面弱酸对低温NH3-SCR反应起主要作用,催化剂表面上活性组分的表面浓度和氧化态明显不同,较高的Mn~(4+)/Mn~(3+)原子比和吸附氧表面浓度对提高催化剂的低温NH3-SCR反应活性有利。  相似文献   

16.
研究了不同分子筛负载的Pt催化剂上丙烷与苯的烷基化反应.结果表明,Pt/HZSM-5具有较好的催化性能.在0~0.3%范围内提高Pt负载量可以提高催化剂的催化活性和生成C9以及C10 芳烃的选择性,降低非芳烃产物的选择性.较低的反应温度、较高的苯/丙烷摩尔比和较高的空速有利于烷基芳烃的生成.  相似文献   

17.
吕功煊 《分子催化》2014,(3):242-250
采用浸渍法制备了Pt/AC,Pt/ZrO2,Pt/Al2O3催化剂,并研究了其对一甲胺湿式氧化(CWAO)反应的催化性能.结果表明:载体对Pt的催化活性具有十分明显的影响,当Pt负载到活性炭(AC)载体表面时具有最佳的催化活性,其次是氧化锆,而当Pt负载到氧化铝载体表面时,其催化活性最低.一甲胺在Pt/AC,Pt/ZrO2,Pt/Al2O3催化剂表面被矿化所需最低温度分别为200,250和280℃.Pt/AC催化剂优异的催化活性主要归因于Pt与载体间的弱相互作用、活性炭的大比表面积以及载体自身具有一定的催化活性.  相似文献   

18.
应用原位Mossbauer谱等技术考察了PtSn/Al_2O_3催化剂中锡组分与丙烷的作用,研究了丙烷在该催化剂上的脱氢反应行为。提出了丙烷的脱氢反应模型,即负载型铂锡催化剂中的氧化态锡用于活化丙烷,而金属铂则通过反溢流过程移去活化了的丙烷中的氢,从而使丙烷催化脱氢过程得以循环进行。  相似文献   

19.
有序介孔Sn-SBA-15负载铂催化剂上丙烷脱氢性能的提高   总被引:1,自引:0,他引:1  
丙烷脱氢制丙烯能够将低级烷烃转变成烯烃,是有效扩大丙烯来源的生产工艺.铂锡催化剂用于丙烷催化脱氢的主要缺点是稳定性差、选择性低,通过稳定锡的氧化态可以大大改善催化剂的脱氢性能及稳定性.本文采用一锅水热合成法制备了一系列高比表面积具有高度有序介孔结构的Sn掺杂的Sn-SBA-15材料,并作为载体负载铂催化剂用于丙烷脱氢反应.同时利用传统浸渍法(IM)合成了Sn/SBA-15-IM材料作为对比.结合X射线衍射(XRD)、BET比表面积和孔体积测试、红外光谱(FT-IR)、X射线光电子能谱、H2程序升温脱附(H2-TPD)、热重分析(TGA)、扫描电镜和透射电镜等多种物理化学表征手段研究了Sn-SBA-15材料和催化剂的结构性质及其丙烷脱氢反应性能.XRD和BET比表面积和孔体积测试结果表明,水热合成法原位引入助剂Sn不影响载体SBA-15的有序孔道结构,同时能够保持较大的比表面积.传统浸渍法引入Sn会堵塞载体孔道,载体比表面积及孔道有序度下降.Sn掺杂进入SBA-15骨架能够增强Sn物种与载体的相互作用,有利于Sn物种在反应过程中保持氧化态,提高催化剂丙烷脱氢反应的活性及选择性.当Sn掺杂量增至2.0 wt%时,Pt,Sn组分与载体之间的相互作用减弱,催化剂中Sn0物种所占比例增多,导致催化剂丙烷脱氢性能下降.在丙烷脱氢反应过程中,一锅法引入Sn的催化剂上反应活性和稳定性明显优于浸渍法引入Sn的催化剂.其中,Pt/0.5 Sn-SBA-15催化剂表现出最优的丙烷脱氢性能,丙烷转化率为43.8%,丙烯选择性为98.5%.  相似文献   

20.
丙烷脱氢制丙烯能够将低级烷烃转变成烯烃,是有效扩大丙烯来源的生产工艺.铂锡催化剂用于丙烷催化脱氢的主要缺点是稳定性差、选择性低,通过稳定锡的氧化态可以大大改善催化剂的脱氢性能及稳定性.本文采用一锅水热合成法制备了一系列高比表面积具有高度有序介孔结构的Sn掺杂的Sn-SBA-15材料,并作为载体负载铂催化剂用于丙烷脱氢反应.同时利用传统浸溃法(IM)合成了Sn/SBA-15-IM材料作为对比.结合X射线衍射(XRD)、BET比表面积和孔体积测试、红外光谱(FT-IR)、X射线光电子能谱、H_2程序升温脱附(H_2-TPD)、热重分析(TGA)、扫描电镜和透射电镜等多种物理化学表征手段研究了Sn-SBA-15材料和催化剂的结构性质及其丙烷脱氢反应性能.XRD和BET比表面积和孔体积测试结果表明,水热合成法原位引入助剂Sn不影响载体SBA-15的有序孔道结构,同时能够保持较大的比表面积.传统浸溃法引入Sn会堵塞载体孔道,载体比表面积及孔道有序度下降.Sn掺杂进入SBA-15骨架能够增强Sn物种与载体的相互作用,有利于Sn物种在反应过程中保持氧化态,提高催化剂丙烷脱氢反应的活性及选择性.当Sn掺杂量增至2.0 wt%时,Pt,Sn组分与载体之间的相互作用减弱,催化剂中Sn~0物种所占比例增多,导致催化剂丙烷脱氢性能下降.在丙烷脱氢反应过程中,一锅法引入Sn的催化剂上反应活性和稳定性明显优于浸溃法引入Sn的催化剂.其中,Pt/0.5Sn-SBA-15催化剂表现出最优的丙烷脱氢性能,丙烷转化率为43.8%,丙烯选择性为98.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号