首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
采用一种原位合成工艺制备了具有类石榴结构的金属铋(Bi)单质修饰的g-C3N4复合材料(Bi-CN),并用于可见光氧化NO反应中.金属Bi单质镶嵌在CN层间形成的复合物,由于金属Bi单质显著的表面等离子体共振(SPR)作用可将光吸收范围由紫外光延展至近红外,极大地提高了复合物的光吸收.此外,由于Bi单质存在于复合物界面可产生内建莫特-肖特基效应,从而加快光生载流子的分离与转移.由此,Bi-CN复合物光催化剂展现出超强的光催化去除NO性能.我们提出了类石榴结构的形成以及相应的Bi-CN复合物光催化活性的提高机理.这不仅为高效的金属铋单质改性的g-C3N4基光催化剂提供了一种新的设计方案,也对g-C3N4基光催化的机制理解提出了新的见解.通过X射线衍射、红外光谱和X射线光电子能谱结果发现Bi是以金属单质的形式存在于Bi-CN复合物中,这得益于我们采用了二水合铋酸钠(NaBiO3·2H2O)作为铋前驱体,从而成功避免了氧化态铋的形成.Bi-CN复合物中金属铋单质的存在有诸多优点.首先,金属铋单质具有显著的表面SPR效应,它的引入可大大提高复合物的光吸收能力和太阳光利用率.有研究表明,直径为150–200 nm的铋球能够在紫外-可见漫反射图谱(UV-vis)在λ=500 nm处呈现出典型的SPR峰,但本样品在λ=200–800 nm区间内并未发现该SPR峰.由于铋单质的共振受限于其尺寸大小、颗粒形状和构造环境.本文中球形铋单质的直径约为1μm,其可能发生共振效应的峰位置应超过800 nm,因此未发现相应的SPR峰.其次,金属铋单质分散在CN层表面上构建的肖特基垫垒能够高效地阻止光生电子与空穴的复合,促进了光生载流子的分离与转移,从而提高光氧化NO进程.再者,金属铋单质的介入成功构造了Bi-CN异质结,在可见光照射下NO氧化反应中,Bi-CN复合物活性显著高于CN(22.2%)、CN-EG(36.4%)和Bi(14.1%),其中以10%Bi-CN活性最佳,NO去除率到70.4%,远远超过K插层的g-C3N4、Ag掺杂的g-C3N4和氧化石墨烯修饰的g-C3N4.当复合物中金属铋单质含量超过10%时,其活性明显下降.这是因为大量的金属铋单质积聚在Bi-CN复合物表面上而造成物理堵塞,妨碍了CN吸收可见光,从而降低了其可见光吸收能力;同时导致只会吸收更多的紫外光(λ<280 nm)而不是可见光,因而其可见光催化氧化NO能力下降.  相似文献   

2.
刘优昌  王亮 《燃料化学学报》2018,46(9):1146-1152
以三聚氰胺作为合成g-C_3N_4纳米片的前躯体,以Bi(NO3)3·5H2O和KBr作为合成BiOBr的原料,采用水热法构建g-C_3N_4/Bi OBr二维异质结可见光催化剂,有效的晶面复合和合适的能带组合有助于增强g-C_3N_4和BiOBr的可见光催化活性。利用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、光致发光光谱(PL)和紫外-可见漫反射光谱(UVvis DRS)等方法表征其结构、光学性质以及组成结构。在可见光(λ420 nm)下以光催化降解RhB来评价合成催化剂的光催化活性,结果表明,g-C_3N_4/BiOBr光催化降解罗丹明B(Rh B)的效率高于单体g-C_3N_4和BiOBr,并对g-C_3N_4/BiOBr增强可见光催化RhB机理进行解释。  相似文献   

3.
利用原位沉积法将Bi OBr纳米片生长到g-C_3N_4表面,制得g-C_3N_4-Bi OBr p-n型异质结复合光催化剂。采用X射线衍射(XRD)、红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、紫外可见漫反射(UV-Vis-DRS)和荧光光谱(PL)等测试对光催化剂结构和性能进行表征。通过可见光辐照降解甲基橙水溶液检测评估复合光催化剂光催化活性。研究结果表明:复合光催化剂由Bi OBr和g-C_3N_4两相组成,Bi OBr纳米片在片状g-C_3N_4表面快速形核生长形成面-面复合结构。相比于纯相g-C_3N_4和Bi OBr,g-C_3N_4-Bi OBr复合材料具有更强可见光吸收能力,吸收带边红移。在可见光辐照100 min后,性能最佳的2:8 gC_3N_4-Bi OBr复合光催化剂光催化活性分别是纯相g-C_3N_4和Bi OBr的1.8和1.2倍,经过4次循环实验后,其降解率仍达84%,说明复合结构光催化剂催化性能和稳定性增强。复合光催化剂的荧光强度显著降低,说明光生载流子复合得到了有效抑制。复合光催化剂催化性能的提高归因于p-n型异质结促进电荷有效分离、抑制电子-空穴复合和吸收光波长范围的扩展,相比单一成分材料具有更好的催化活性和稳定性。自由基捕获实验证明,可见光降解甲基橙光催化过程中的主要活性成分为空穴,并据此提出了可能的光催化机理。  相似文献   

4.
近年发展起来的低能耗、高效率的光催化技术为解决环境污染和能源短缺等问题提供了新途径.在众多光催化材料中,非金属石墨相氮化碳(g-C_3N_4)半导体材料因其化学稳定性和热稳定性优异、能带结构易调控、前驱体价格低廉等特点备受关注.然而,g-C_3N_4的光生电子-空穴对极易复合,比表面积较小,不能充分利用太阳光等,因而其光催化活性较低.目前,为了提高g-C_3N_4光催化性能,多采用金属或非金属元素掺杂、与其他物质形成异质结、与其他半导体材料进行共聚合等方式.其中,共聚合有利于调节g-C_3N_4内部电子结构,促进g-C_3N_4光生载流子的分离与迁移,而且具有高度离域π-π*共轭结构的导电聚合物更适合与g-C_3N_4进行共聚合,从而进一步提高g-C_3N_4的光催化性能.本文采用原位聚合法制备合成了导电聚吡咯(PPy)与g-C_3N_4的复合材料,并以10 mg L.1亚甲基蓝(MB)作为目标污染物评价其可见光催化性能.经X射线衍射、扫描电镜、透射电镜、比表面积、紫外-可见光谱等一系列表征分析可知,PPy/g-C_3N_4复合物(002)晶面衍射峰强度较g-C_3N_4减弱,表明PPy抑制了g-C_3N_4晶型生长,但未影响其晶型结构.不规则薄片状g-C_3N_4表面均匀地负载有非晶态PPy颗粒,复合物微观形貌发生变化.PPy与g-C_3N_4共轭芳香环层间堆积形成的介孔、大孔孔径和孔容积均增加,比表面积增大了7 m2 g.1,使目标污染物能与光催化剂表面活性物质充分接触反应.同时,PPy具有较强吸光系数,对可见光能完全吸收;PPy/g-C_3N_4复合物的可见光吸收边带发生红移,呈现出较g-C_3N_4更强的可见光吸收能力,提高对可见光的利用效率.光催化降解MB实验结果表明,在可见光(12 W LED灯)照射2 h后,含有0.75 wt%PPy的复合样品0.75PPy/g-C_3N_4表现出最佳光催化活性,MB降解效率为99%;且污染物光催化降解过程符合准一级动力学,反应速率常数(0.03773 min~(-1))约为同条件下g-C_3N_4(0.01284 min~(-1))的3倍.自由基捕获测试实验表明,g-C_3N_4和0.75PPy/g-C_3N_4均产生了·O~2~-自由基,但后者的·O2~-信号更强.这是因为PPy也可吸收可见光并激发出电子,该电子转移到g-C_3N_4导带,再与其本身的电子共同与O2反应生成·O_2-.然而只有0.75PPy/g-C_3N_4在光催化过程中产生了·OH自由基,是由于g-C_3N_4的价带(+1.4 eV)较H_2O/·OH(+2.38 eV vs.NHE)和OH~-/·OH(+1.99 eV vs.NHE)小,此价带上的h~+不能与H_2O和OH~-反应生成·OH,而是由生成的·O_2~-再与e~-和H~+反应产生,即·O_2~-+2H+2e~-CB→·OH+OH~-.本文最后分析了以·O_2~-和·OH作为主要活性物质的PPy/g-C_3N_4复合物光催化降解污染物的反应机理,PPy具有强导电性,可作为光生电子和空穴的传输通道,抑制其在g-C_3N_4表面的复合.  相似文献   

5.
Bi OI具有独特的层状结构及较窄的带隙,是具有可见光响应的光催化剂.然而,高光生载流子复合率抑制了其光催化活性.大量研究表明,氧缺陷不但是催化剂表面最具活性的位点,而且可以通过减小禁带宽度扩大光响应范围.与此同时,氧缺陷也可以作为光致电荷陷阱,抑制电子-空穴复合,并作为电荷转移到吸附物种的吸附位点.金属的表面等离子体共振(SPR)效应为半导体材料更高效的光吸收和利用提供了一条崭新的途径,从而可以获得更好的太阳光转换和光催化效率.然而, SPR效应和由氧缺陷引起的多个中间能级协同作用还未被探究.本文研究了利用金属铋的SPR效应和引入缺陷共同提高BiOI的光催化性能.通过部分还原BiOI制备出具有较高可见光催化去除氮氧化物活性的Bi@缺陷型BiOI,研究了还原剂用量对Bi@缺陷型Bi OI光催化性能的影响.发现用2 mmol还原剂Na BH4制备的光催化剂(Bi/BiOI-2)具有最高效的可见光催化活性.XRD、XPS、SEM和TEM表征表明Bi单质沉积在Bi OI表面,整个体系由纳米片自组装为海绵状立体结构.BET比表面积增大,结合SEM推测是由纳米片的分层堆叠造成的.UV-DRS表明带隙宽度仅有1.8 eV的Bi OI具有可见光响应.EPR和态密度(DOS)结合可以证明氧缺陷及其激发多个中间能级的存在.中间能级可以促进电子在可见光下从价带到导带的转移.PL表明体系中Bi金属的SPR效应所激发的电磁场可以促进光生载流子的分离.通过DFT理论计算催化剂的电子结构,差分、电子局域函数(ELF)及电势表明Bi单质和Bi-O层间强的共价作用形成一个通道,使得热电子从较高电势的Bi单质向相对低电势的Bi OI传递, Bi单质PDOS的计算证明价带变宽归因于Bi元素轨道的贡献, Bi的SPR效应激发Bi OI的电子到更高能级并聚集在价带顶,这有利于光生载流子的分离.ESR表明提升的电荷分离和迁移率促进了羟基和超氧自由基的产生.结合表征及理论计算结果,活性的增强可归因于金属Bi和氧空位的协同效应.氧缺陷激发的中间能级促进了电荷转移, Bi金属的SPR效应使可见光吸收效率提高并且促进了光生载流子分离,这些是增强光催化性能的关键因素.此外,采用原位红外光谱法(FT-IR)对Bi/BiOI-2的NO吸附和反应过程进行了动态监测.根据中间产物分析和DFT计算结果,提出了金属Bi和氧空位协同作用提高Bi/BiOI光催化性能的机理.本研究为高性能光催化剂的设计和理解空气净化光催化反应机理提供了新的思路.  相似文献   

6.
氢能是最具应用前景的清洁能源之一,利用太阳能作为驱动力光催化水分解制取氢气已被广泛研究.作为非金属半导体光催化剂, g-C_3N_4具有合适的能带结构(2.71 eV),良好的可见光捕获能力和物理化学稳定性,因而有一定的光催化产氢能力;但是它具有可见光吸收能力(470 nm)不够、光生电子空穴容易复合等缺点,使其光催化制氢能力受到了极大限制.通过助剂修饰可有效促进载流子分离,增加反应活性位点及加速产氢动力学.因此,本文采用双助剂改性以提高g-C_3N_4的光催化制氢性能.本文首先采用原位煅烧法将银纳米粒子(AgNPs)沉积在g-C_3N_4表面(Ag/g-C_3N_4),随后利用水热法成功地将硫化镍(NiS)负载在Ag/g-C_3N_4复合材料表面.XRD, FT-IR, XPS和TEM结果表明,通过原位煅烧和水热合成法可以成功地将Ag和NiS均匀、稳定沉积在g-C_3N_4表面,并且g-C_3N_4保持原有结构不变.紫外可见吸收光谱(UV-Vis)、瞬态光电流、阻抗(EIS)和光致发光谱(PL)分析表明, AgNPs和NiS的引入不仅改善了体系的光吸收范围和强度,而且显著提高了体系光生电子和空穴的产生、分离性能,有助于提高光子利用效率.其中三元样品的最高光电流可以达到2.94′10–7 A·cm~(–2),是纯g-C_3N_4的3.1倍.对系列光催化剂的分解水制氢性能测试发现(采用300 W氙灯作为光源,三乙醇胺作为牺牲剂), 10wt%-NiS/1.0wt%-Ag/CN样品具有最优异的光催化分解水制氢性能,产氢速率可达9.728 mmol·g–1·h–1,是纯g-C_3N_4的10.82倍,二元10wt%-NiS/CN的3.45倍, 1.0wt%-Ag/CN的2.77倍.三元样品反应前后的XRD特征峰位置没有发生变化,循环四次后样品仍具有83%的催化活性,证明其具有良好的制氢稳定性.10 wt%-NiS/1.0 wt%-Ag/CN样品在可见光下(λ 420 nm)的制氢量子效率为1.21%.三元体系光催化产氢性能增强的原因在于:(1)Ag纳米颗粒的局域表面等离子体效应使得三元体系的光捕获能力得到提高;(2)Ag NPs和NiS负载在g-C_3N_4上共同促进了光生电子空穴的产生和分离;(3)Ag NPs和Ni S作为优良的析氢助催化剂沉积在g-C_3N_4表面上可以有效地提高产氢动力学.本文构建的NiS/Ag/g-C_3N_4复合体系为g-C_3N_4基复合光催化剂的设计及制备提供了新的思路.  相似文献   

7.
以g-C_3N_4/H_2SO_4溶液和硝酸铋为前驱体,采用自组装法制备了中空花状且具有可见光响应能力的异质结光催化剂gC_3N_4@BiOCl。利用X射线衍射、电子扫描显微镜、高分辨透射电镜、X射线能谱、紫外可见漫反射光谱及X射线光电子能谱等表征手段确证了催化剂的结构。该催化剂能够有效地实现光生电子-空穴的分离,表现出优异的可见光催化活性。通过对50 mg·L~(-1)罗丹明B的降解实验验证了g-C_3N_4@BiOCl的光催化活性,在可见光条件下(λ≥420 nm)的降解效率优良,12 min即可达到99%。  相似文献   

8.
采用浸渍法成功地将硅钨酸(SiW_(12))负载到g-C_3N_4表面,制备出一种新型的SiW_(12)/g-C_3N_4复合光催化剂.通过X-射线衍射(XRD)、红外光谱(FT-IR)、扫描电子显微镜(SEM)、荧光光谱(PL)和紫外-可见分光光度计(UV-Vis)等测试手段对其结构和性能进行表征.光催化实验表明,在可见光照射下(λ420nm),SiW_(12)/g-C_3N_4复合材料表现出比纯gC3N4更高的光催化性能.其中,SiW_(12)/g-C_3N_4(质量比为1∶3)复合材料具有最好的光催化活性,在可见光下辐照120 min时,RhB的脱色率达98.0%.若加入H_2O_2(2 mL,质量分数为30%)进行修饰,仅在可见光下辐照24min,RhB的脱色率就达到97.7%.SiW_(12)/g-C_3N_4复合材料光催化活性的提高归因于光生电子-空穴对的有效分离.此外,由H_2O_2分解产生的氢氧自由基(·OH)也起到了至关重要的作用.  相似文献   

9.
半导体光催化技术是目前最有前景的绿色化学技术,可通过利用太阳光降解污染物或制氢.作为有潜力的半导体催化剂,钼酸铋具有合适的带隙(2.58 eV).但是,由于低的量子产量,钼酸铋的光催化性能并不理想.为了提高钼酸铋的光催化性能,研究者多考虑采取构造异质结的方式.石墨相氮化碳(g-C3N4)能带位置合适,与多种光催化半导体能带匹配,是构造异质结的常用选择.因此,本文选用g-C3N4与钼酸铋复合,构造异质结结构.为了进一步提高光催化性能,多采用负载贵金属(Pt,Au和Pd)作为助催化剂,利用贵金属特有的等离子共振效应,增加光吸收,促进载流子分离,但贵金属价格昂贵.Bi金属单质价格便宜,具备等效的等离子共振效应,是理想的贵金属替代物.钼酸铋可以采取原位还原的方式还原出Bi单质,构造更紧密的界面结构,更有利于载流子传输.Bi的等离子共振效应可以有效提高材料的光吸收能力和光生载流子分离率.本文采用溶剂热和原位还原方法成功合成了一种新型三元异质结结构g-C3N4/Bi2MoO6/Bi(CN/BMO/Bi)空心微球.结果显示,三元异质结结构的最佳配比为0.4CN/BMO/9Bi,该样品表现出最好的光催化降解罗丹明B效率,是纯钼酸铋的9倍.通过计算DRS和XPS的价带数据,0.4CN/BMO/9Bi是一种Z字型异质结.牺牲试剂实验也提供了Z字型异质结的有力证据,测试显示超氧自由基·O^2-(在-0.33 eV)是光催化降解的主要基团.但是,钼酸铋的导带位置低于-0.33 eV,g-C3N4的导带高于-0.33 eV,因此g-C3N4的导带是唯一的反应位点,从而证明了光生载流子的转移是通过Z字型异质结结构实现的.TEM图显示金属Bi分散在钼酸铋表面.DRS和PL图分析表明金属Bi增加了材料的光吸收能力,同时扮演了中间介质的角色,促进钼酸铋导带的电子和g-C3N4价带的空穴快速复合.因此,g-C3N4/Bi2MoO6/Bi的优异光催化性能主要归功于Z字型异质结和Bi金属的等离子共振吸收效应,提高了材料的光吸收能力和光生载流子分离率.  相似文献   

10.
近年来,利用太阳光光解水制氢被认为是解决当前能源短缺和环境污染问题的重要途径之一.众所周知,助催化剂可以有效的降低光催化产氢反应的活化能,提供产氢反应的活性位点,有效的促进催化剂中光生载流子的传输与分离,从而提高光催化剂产氢体系的反应活性和稳定性.然而,鉴于贵金属助催化剂(Pt, Au和Pd等)储量低、成本高,极大地制约了其应用.因而,开发出适用于光催化水分解制氢的非贵金属助催化剂尤为重要.石墨相氮化碳(g-C_3N_4)因其具有热稳定性、化学稳定性高以及制备成本低廉等优点,成为光催化领域研究的热点.然而,由于g-C_3N_4的禁带宽度(Eg=2.7 eV)较宽,致使其对可见光的响应能力较弱,并且在光催化反应过程中其光生电子-空穴对易复合,从而导致其光催化产氢活性较低.因此,如何开发出含非贵金属助催化剂的g-C_3N_4高效、稳定的太阳光催化分解水制氢体系引起了人们极大的关注.本文通过水热法-高温氨化法首次将非贵金属Ni_3N作为助催化剂来修饰g-C_3N_4,增强其可见光光催化性能(l420 nm).采用XRD、SEM、EDS、Mapping、UV-Vis、XPS和TEM等手段对Ni_3N/g-C_3N_4光催化体系进行了表征.结果表明, Ni_3N纳米颗粒成功的负载到g-C_3N_4表面且没有改变g-C_3N_4的层状结构.此外,采用荧光光谱分析(PL)、阻抗测试(EIS)和光电流谱进行表征,结果显示, Ni_3N纳米颗粒可有效促进催化剂中光生载流子的传输与分离,抑制电子-空穴对的复合.同时,将功率为300 W且装有紫外滤光片(λ420 nm)的氙灯作为可见光光源进行光催化产氢实验结果表明,引入了一定量的Ni_3N可以极大提高g-C_3N_4的光催化活性,其中, Ni_3N/g-C_3N_4#3的产氢量为~305.4μmol·h-1·g-1,大约是单体g-C_3N_4的3倍.此外,在450nm单色光照射下, Ni_3N/g-C_3N_4光催化产氢体系的量子效率能达到~0.45%,表明Ni_3N/g-C_3N_4具有将入射电子转化为氢气的能力.循环产氢实验表明, Ni_3N/g-C_3N_4在光催化产氢过程中有着较好的产氢活性和稳定性.最后,阐述了Ni_3N/g-C_3N_4体系的光催化产氢反应机理.本文采用的原料价格低廉,性能优异,制备简单,所制材料在光催化制氢领域展现出重要前景.  相似文献   

11.
首先在N-甲基吡咯烷酮溶液中超声剥离得到少层的MoS_2,将其与石墨相氮化碳(g-C_3N_4)复合,制得MoS_2/g-C_3N_4复合材料。采用X射线衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),Raman光谱,紫外-可见漫反射吸收光谱(DRS)和光致荧光(PL)技术对复合材料进行表征。可见光下考察MoS_2/g-C_3N_4复合材料光催化降解罗丹明B(Rh B)的活性,结果表明:将少量MoS_2与g-C_3N_4复合可明显提高光催化活性,且1%(w/w)MoS_2/g-C_3N_4复合物的光催化活性最高,可能的原因是MoS_2和g-C_3N_4匹配的能带结构,增大了界面间电荷的传输,降低了光生电子-空穴的复合,进而提高了光催化活性。  相似文献   

12.
有毒重金属离子Cr(Ⅵ)广泛应用于制革、电镀、印刷、颜料和抛光等行业,因而成为地表水和地下水中常见的污染物.光催化还原Cr(Ⅵ)为Cr(Ⅲ)利用可持续能源太阳能,费用低且没有二次污染问题,已经受到广泛关注.g-C_3N_4是一种稳定性好且能吸收可见光的优异光催化材料,但也具有比表面积小及电子和空穴容易复合等缺点.为进一步提高g-C_3N_4的光催化效率,人们合成了各种新型复合材料,如g-C_3N_4/Bi2WO6,g-C_3N_4/SiW11和g-C_3N_4/Zn_3V_2O_7(OH)_2(H2O)_2等.本文通过非常简便的球磨-煅烧法制备了金属-有机骨架材料MIL-100(Fe)与类石墨结构氮化碳(g-C_3N_4)的异质结结构(MG-x,x_=5%,10%,20%和30%,代表MIL-100(Fe)占复合物的质量分数),并对复合材料进行了粉末X射线衍射(PXRD)、红外光谱(FTIR)、热重(TGA)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DR)和荧光光谱(PL)等表征.实验研究了MG-x在模拟太阳光照射下光催化还原Cr(Ⅵ)和降解双氯芬酸钠的性能,考察了空穴捕捉剂(乙醇、柠檬酸、草酸和双氯芬酸钠)和pH值(_2~–8)对光催化还原Cr(Ⅵ)效率的影响.实验结果表明,PXRD谱图显示复合物的衍射峰位置均与MIL-100(Fe)及g-C_3N_4的峰位置相吻合,球磨和煅烧后无新衍射峰产生.TEM图片证明复合物中g-C_3N_4附着在MIL-100(Fe)表面.光照80 min后,MG-x复合物的还原效率均大于92%,高于MIL-100(Fe)(75.6%)和g-C_3N_4(79.8%)的还原效率.其中,MG-20%的光催化活性最高,还原效率达到97.0%,且还原Cr(Ⅵ)的速率分别是MIL-100(Fe)的3.08倍和g-C_3N_4的2.31倍.随着MIL-100(Fe)含量的增加,复合物的光催化活性先增后减.这是因为MIL-100(Fe)含量的增加不仅有利于电荷的转移,也有利于可见光的利用,然而过多的MIL-100(Fe)可能会影响异质结的质量,不利于电荷的转移.随着溶液pH值从2提高到8,还原效率从98%降低到9%.这是因为在酸性条件下H+浓度高有利于Cr(Ⅵ)还原为Cr(Ⅲ),而当pH6时,Cr3+与OH–形成Cr(OH)_3沉淀附着在催化剂表面,影响对光的吸收,降低了光催化效率.当反应体系中加入乙醇、柠檬酸和草酸时,光催化速率提高,而加入双氯芬酸钠后光催化速率未见提高,这是由于小分子链烃有机物容易捕捉光生空穴,而双氯芬酸钠不能有效捕捉MG-20%产生的光生空穴.电化学测试证明g-C_3N_4的光生电子可转移到MIL-100(Fe)的导带,复合物提高了光生电子和光生空穴的分离效率,从而提高了光催化还原Cr(Ⅵ)的活性.同时,在加入H2O2的条件下,MG-20%在50 min内光催化降解双氯芬酸钠的效率达到100%.MG-20%循环使用5次后,光催化效率没有明显降低,光催化剂的XRD谱没有发生明显变化,证明其具有很好的稳定性.综上,本研究提供了一种具有应用前景的高效MOF/g-C_3N_4复合物光催化剂.  相似文献   

13.
石墨相氮化碳(g-C_3N_4)具有独特的二维层状结构和合适的能带结构,因而在可见光催化领域广受关注.尤其是在可见光去除环境污染物领域,得到了较为充分的研究与应用.然而g-C_3N_4去除环境污机理的反应机理尚不明确.因此,本文采用理论计算与实验高度结合的研究方法,以光催化NO去除为例,深入阐述了光照下g-C_3N_4表面活性氧物种(ROS)的生成及转化过程,及其介导下的NO光催化氧化机理.X射线衍射结果表明,g-C_3N_4是三嗪环层内聚合后层层堆叠而成,并由红外光谱确定了其表面的官能团类型.该结构经扫描电镜和透射电镜得到了进一步的验证.采用光致激发谱和紫外可见漫反射光谱等实验表征与密度泛函理论计算结合的光电性质分析,我们发现,g-C_3N_4在可见光下具有一定的响应,这为其在光催化去除NO中奠定了基础.同时,其价带位置过高,无法自行产生氧化性较强的羟基自由基(.OH).电子自旋共振技术结果表明g-C_3N_4在光照下能捕获到·O_2~-和·OH两种活性自由基.采用反应路径计算发现,·OH是由·O_2~-在导带上逐步得到电子被还原而生成,其中的速率控制步骤是H_2O_2的解离.因此,促进O_2分子的吸附和活化和克服H_2O_2解离的反应活化能是产生·OH和提升g-C_3N_4光催化氧化活性的关键.采用原位红外光谱技术对g-C_3N_4上NO的氧化去除过程进行了表征,发现其主要中间产物为NO_2,主要终产物为NO_2~-和NO_3~-,采用反应路径计算对该反应过程进行了理论模拟,发现在·O_2~-介导下,最高反应活化能为0.66 eV,而在·OH介导下,该活化能降低至0.46 eV,表明·OH的氧化性要明显强于·O_2~-.总之,本文采用一种可行的、高度结合的实验与计算手段研究了g-C_3N_4上ROS的生成及转化过程及其对NO去除的反应历程,在原子尺度揭示了该反应的机理,加深了对ROS在光催化环境污染物降解过程中作用的理解.  相似文献   

14.
采用一种新颖有效的席夫碱化学法合成吡啶共聚改性的g-C_3N_4,其可见光催化产氢性能较(由尿素为前驱物制备的)纯g-C_3N_4显著增强。在此基础上,又进一步通过一步煅烧的方法构建了吡啶改性g-C_3N_4和N掺杂还原氧化石墨烯(N-r GO)的复合物,其产氢活性得到了进一步地提高,氢气产量最高达到304μmol?h-1,分别为纯g-C_3N_4和吡啶改性g-C_3N_4的11.7倍和3.1倍。除了其增强的可见光吸收能力,增大的表面积,我们认为:吡啶环作为分子内电子受体,N-r GO作为"电子转移活性位",二者共同促进了光生载流子分离和转移,从而显著增强了该复合体系的光催化活性。  相似文献   

15.
作为大气中的典型污染物之一,化石燃料燃烧产生的NO不仅会引起酸雨,还会影响人体呼吸系统.半导体光催化技术可以利用太阳能和空气中的氧气来分解环境污染物,因而得到了国内外学者的广泛关注.作为最具代表性的半导体光催化材料,TiO_2虽然具有较强的氧化能力和优异的生物相容性,但是其禁带宽度较大(3.2 eV)而只能被紫外光激发,无法充分利用太阳能.因此,开发新型可见光响应的半导体催化材料具有重要意义.Bi_2WO_6是一种独特的具有层状结构半导体光催化材料,因其具有可见光响应性能而受到了广泛关注;但是可见光响应范围窄(禁带宽度2.6?2.8 eV)以及其较快的光生载流子复合,导致Bi_2WO_6其光催化效率不高,迫切需要采取有效措施对Bi_2WO_6进行改性.贵金属(诸如金和银)纳米粒子可见光区的表面等离子体效应(SPR),可以用来增强半导体材料的可见光催化性能.但是,贵金属的价格昂贵,难以满足实际需求.近来的研究发现,非贵金属Bi同样具有类似的表面等离子体效应.因此,本文选用以乙二醇为还原剂,通过低温还原Bi(NO_3)_3的方式,在花球Bi_2WO_6表面,成功制备了沉积了Bi纳米球复合光催化次材料.本文用NO的可见光催化氧化来评价Bi/Bi_2WO_6复合材料的光催化性能的可见光催化性能,所使用的光源为可见光LED灯(λ400 nm).结果发现:(1)单一组分的Bi金属和Bi_2WO_6前驱体花球均表现出非常差的光催化活性,NO去除率分别仅为7.7%和8.6%;(2)随着Bi纳米球的负载量从0增加至10 wt%,复合材料Bi/Bi_2WO_6的NO去除效率从12.3%稳定增加至53.1%至20 wt%时开始降低.这可能是由于Bi纳米球阻碍了Bi_2WO_6对光的吸收;(3)改性后的Bi/Bi_2WO_6具有良好的可见光催化稳定性,循环使用在五次后其活性变化不大.光催化机理研究结果显示,Bi/Bi_2WO_6增强的可见光NO去除性能归因于Bi纳米球的SPR效应.在可见光照射下,Bi纳米球的SPR效应产生的电场可以显著促进Bi_2WO_6的光生载流子分离效率.同时,Bi纳米球可以快速转移Bi_2WO_6导带上的光生电子,生成超氧游离基(·O_2~?),从而抑制了光生电子和空穴的复合.Bi_2WO_6表面的空穴可以被表面吸附水捕获,产生羟基自由基(·OH).在活性氧物种·OH和·O_2~?的不断进攻作用下,NO最终被氧化.本文为宽禁带半导体的非贵金属敏化,提升其可见光催化性能解决环境问题提供了新思路.  相似文献   

16.
近年来,石墨型氮化碳(g-C_3N_4)作为一种n型半导体光催化剂材料,由于具有较好的热稳定性和化学稳定性,同时具有可调的带隙结构和优异的表面性质而备受人们关注.然而,传统的g-C_3N_4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷,制约着其光催化活性的进一步提高.因此,人们开发了多种技术对块体状g-C_3N_4材料进行改性,其中构建基于g-C_3N_4纳米薄片的异质结复合光催化材料被认为是强化g-C_3N_4载流子分离效率,进而提高其可见光催化活性的重要手段.BiOI作为一种窄带隙的p型半导体光催化剂,具有强的可见光吸收能力和较高的光催化活性,同时它与g-C_3N_4纳米薄片具有能级匹配的带隙结构.因此,基于以上两种半导体材料的特性,构建新型的BiOI/g-C_3N_4纳米片复合光催化剂材料不仅能够有效提高g-C_3N_4的可见光利用率,而且还可以在n型g-C_3N_4和p型BiOI界面间形成内建电场,极大促进光生电子-空穴对的分离与迁移效率.为此,本文通过简单的一步溶剂热法在g-C_3N_4纳米薄片表面原位生长BiOI纳米片材料,成功制备了新型的BiOI/g-C_3N_4纳米片复合光催化剂.利用X射线衍射仪(XRD),场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试.XRD,SEM和TEM结果显示,结晶完好的BiOI呈小片状均匀分散在g-C_3N_4纳米薄片表面;紫外漫反射光谱表明,纳米片复合材料的吸光性能较g-C_3N_4薄片有显著提升;瞬态光电流测试证明,复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中,BiOI/g-C_3N_4纳米片复合光催化剂显示出了优异的催化活性和稳定性,其光降解活性分别为纯BiOI和g-C_3N_4的34.89和1.72倍;自由基捕获实验发现,反应过程中的主要活性物种为超氧自由基(·O_2~-),即光生电子主导整个降解反应的发生.由此可见,强的可见光吸收能力和g-C_3N_4与BiOI界面处形成的内建电场协同促进了g-C_3N_4纳米薄片的电荷分离,进而显著提高了该复合材料的可见光催化降解活性.此外,本文初步验证了在BiOI/g-C_3N_4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的,而非"Z型转移"机制.  相似文献   

17.
光催化产氢可以直接将太阳能转化为化学能,是非常有前景的产氢技术之一.然而,光催化产氢的瓶颈在于如何提高光催化产氢效率和光催化剂的稳定性,以及降低产氢成本.因此,开发廉价、易于制备的产氢光催化剂引起人们广泛关注.作为一种非金属半导体光催化剂,石墨相氮化碳(g-C_3N_4)具有良好的物理化学性质,如良好的化学和热稳定性、极佳的光电性能、强的抗氧化能力等.更为重要的是,g-C_3N_4具有合适的能带结构,能够利用可见光.因此,g-C_3N_4已广泛应用于光催化降解、空气净化、光解水和光催化CO2还原等领域.然而,体相g-C_3N_4仍然暴露出一些缺点,例如比表面积小、光生电子-空穴对的复合率高和反应动力学差等.将体相g-C_3N_4剥离成g-C_3N_4纳米薄片是提高光催化效率的有效方法.薄层g-C_3N_4纳米片具有较高的比表面积,比体相的g-C_3N_4有更好的光生电子-空穴对分离效率.为了进一步提高g-C_3N_4的光催化性能,本文通过在薄层g-C_3N_4表面均匀分散Au纳米颗粒来控制电荷载流子的流动.并通过光催化产氢和污染物降解来评估金/薄层氮化碳(Au/monolayer g-C_3N_4)复合材料的光催化性能.所有的Au/薄层g-C_3N_4复合材料均显示出优于体相g-C_3N_4的光催化性能,其中1%Au/薄层g-C_3N_4复合光催化剂具有最高的产氢速率(565μmol g.1h.1),且具有最佳的污染物降解能力.这主要归结于热电子的注入,而不是肖特基结.Au纳米颗粒的成功引入带来了表面等离子共振(SPR)效应,SPR效应不仅能够提高光吸收效率,而且能够带来高效的热电子转移途径.热电子是从Au纳米颗粒表面注入到薄层g-C_3N_4纳米片的导带上.因此,Au/薄层g-C_3N_4复合光催化剂具有更高的光生电子-空穴对迁移和分离效率,以及更低的光生电子-空穴对复合几率.采用紫外可见光谱(UV-Vis)、光致发光光谱(PL)、光电流和阻抗等表征手段研究了Au/薄层g-C_3N_4复合光催化剂性能提升的原因.结果表明,相比于薄层g-C_3N_4纳米片,Au/薄层g-C_3N_4复合光催化剂具有更好的光电性能,因而光催化活性更高.此外,与薄层g-C_3N_4纳米片的光电流强度相比,Au/薄层g-C_3N_4复合光催化剂的光电流强度没有发生改变,这表明薄层g-C_3N_4纳米片导带上的光生电子不可能转移到Au纳米颗粒的表面.也就是说,肖特基结并没有参与到电子转移过程中,因此推测出整个光催化反应是热电子注入在起作用  相似文献   

18.
许多研究表明,MnO_x和g-C_3N_4均有催化氧化NO的活性,并且探索了它们各自的转化机理.然而,MnO_x/g-C_3N_4复合材料的光热催化机理仍然是一个未解决的问题.我们通过室温沉淀法直接合成不同摩尔比的MnO_x/g-C_3N_4,并发现其表现出良好的光热协同催化氧化NO的性能.MnO_x/g-C_3N_4催化剂在g-C_3N_4表面含有不同价态的MnOx.通过原位红外光谱在60°C下研究了紫外-可见光诱导的MnOx热催化NO的机理以及MnO_x/g-C_3N_4光热协同催化NO的机理.结果表明,光照对MnOx热催化NO的过程几乎没有影响,但对MnO_x/g-C_3N_4光热协同催化NO产生积极作用并且形成重要的催化循环机制.具体过程是光生电子(e~–)转移到MnO_x上参与光热协同的还原循环(Mn~(4+)→Mn~(3+)→Mn~(2+)),且低价Mn离子易给出电子(e~–)与光生空穴(h~+)相结合而诱导逆向的循环(Mn~(2+)→Mn~(3+)→Mn~(4+)),使活性氧空位再生.通过MnO_x(Mn~(4+)/Mn~(3+)/Mn~(2+))变价而产生的活性氧(O~–)可将中间产物(NOH和N_2O_2~–)氧化为终产物(NO_2~–和NO_3~–).这将为开发更好的净化NO_x的催化剂提供重要的指导意义.XRD表征结果表明,MnO_x/g-C_3N_4复合催化剂的结晶度较低.TEM和XPS表征结果表明,g-C_3N_4表面含有多种低结晶度的MnO_x,主要含有MnO,MnO_2和Mn_2O_3.此外,通过对比MnO_x和1:5 MnO_x/g-C_3N_4催化净化NO的XPS结果,发现反应后的MnO_x含有大量Mn-Nitrate且Mn~(3+)和Mn~(4+)大幅度减少;同时,反应前后1:5 MnO_x/g-C_3N_4的Mn~(2+),Mn~(3+)和Mn~(4+)的含量变化微弱.BET-BJH测试结果显示,MnO_x/g-C_3N_4复合催化剂的比表面积和孔容均高于纯g-C3N4.UV-Vis DRS测试结果显示,MnO_x/g-C_3N_4复合催化剂显示了良好的可见光吸收能力.紫外-可见光催化去除NO的测试结果表明,1:5 MnO_x/g-C_3N_4(44%)的光催化活性明显高于MnO_x(28%)和g-C_3N_4(36%).ESR测试结果表明,参与反应的主要活性物种为?O_2~–自由基.EPR测试结果表明,1:5 MnO_x/g-C_3N_4的氧空位明显多于MnO_x,丰富的活性氧空位更有利于电子的迁移且促进Mnn+(n=2,3和4)的变价而诱导O2分子形成活性氧(O–).以上结果清晰地表明1:5 MnO_x/g-C_3N_4表现出不同的理化特性.可见光催化氧化NO的原位红外光谱表明,光照前后MnOx催化氧化NO的过程没有明显的变化,表明其属于典型的热催化过程,综合上述表征结果发现MnOx的氧缺陷是Mnn+(n=3和4)变价的活性位点,可诱导O_2产生活性氧催化氧化NO为硝酸盐吸附在MnO_x上;光照前后1:5 MnO_x/g-C_3N_4催化氧化NO的过程有明显不同,光照前主要表现为g-C_3N_4表面MnO_x的热催化过程,而光照后1:5 MnO_x/g-C_3N_4为光热协同催化NO的过程.具体过程是g-C_3N_4的光生电子(e~–)转移到MnO_x上参与光热协同的还原循环(Mn~(4+)→Mn~(3+)→Mn~(2+)),且低价Mn离子易给出电子(e~–)与光生空穴(h~+)相结合而诱导逆向的循环(Mn~(2+)→Mn~(3+)→Mn~(4+))使活性氧空位再生.通过MnOx(Mn~(4+)/Mn~(3+)/Mn~(2+))变价而产生的活性氧(O~–)可将中间产物(NOH和N_2O_2~–)氧化为终产物(NO_2~–和NO_3~–).  相似文献   

19.
江静  曹少文  胡成龙  陈春华 《催化学报》2017,(12):1981-1989
利用半导体光催化技术将太阳能转化为清洁化学能源是解决能源危机和环境问题的最有潜力的途径之一.过去几十年,许多半导体包括氧化物、硫化物和氮化物均表现出光催化活性.然而,半导体光催化的实际应用仍然受制于其较低的太阳能转化效率.解决上述问题的方法之一是发展高效的可见光光催化制氢材料.近年来,石墨相氮化碳(g-C_3N_4)作为一种聚合物半导体材料,受到了光催化研究人员的广泛关注.g-C_3N_4具有可见光吸收能力、合适的导带价带位置、良好的热稳定性和化学稳定性,且制备方法简单和结构易调控,是一种极具潜力的光催化制氢材料.然而g-C_3N_4仍然仅能吸收波长450 nm以下的光,且其光生电子和空穴极易复合,因而光催化制氢效率较低.目前,研究人员采用了多种改性方法来增强g-C_3N_4的光催化性能,其中通过元素掺杂进行能带结构调控是一种非常有效的策略.而碱金属原子(Li,Na和K)被认为可有效进入g-C_3N_4的内部结构,通过引入缺陷来拓宽g-C_3N_4的光吸收范围和提高光生电荷的分离效率.不过到目前为止,尚未见系统的比较研究来深入理解不同碱金属元素掺杂的g-C_3N_4在可见光光催化制氢中的性能差异.本文采用X射线衍射(XRD)、氮气吸附-脱附测试、紫外可见漫反射光谱(UV-visDRS)、时间分辨荧光光谱(TRPL)、X射线光电子能谱(XPS)、光电化学测试和光催化制氢测试等表征和测试手段比较研究了不同碱金属元素掺杂的g-C_3N_4在结构、光学性质、能带结构、电荷转移能力和光催化性能等方面的差异.XRD结果表明,碱金属掺杂可导致g-C_3N_4的层间距离增大,且碱金属原子半径越大,g-C_3N_4的层间距离越大.氮气吸附-脱附测试结果表明,碱金属掺杂可提高g-C_3N_4的比表面积,其中Na掺杂的最高.UV-vis DRS和XPS谱结果表明,依Li,Na,K的顺序,碱金属掺杂导致g-C_3N_4带隙逐渐变窄,使得可见光吸收能力逐渐增强,且其导带和价带位置逐渐下移.TRPL和光电化学测试结果显示,碱金属掺杂有效抑制了g-C_3N_4的光生载流子复合和促进了光生载流子的转移,其中Na掺杂的g-C_3N_4的光生载流子利用效率最高.可见光光催化制氢实验表明,碱金属掺杂显著提升了g-C_3N_4的光催化性能,其中以Na掺杂的g-C_3N_4性能最佳,其产氢速率(18.7mmol h–1)较纯的g-C_3N_4(5.0mmol h–1)可提高至3.7倍.由此可见,g-C_3N_4的掺杂改性是一个对其微结构和能带结构的优化调控过程,最终获得最优的光催化性能.  相似文献   

20.
石墨相的氮化碳(g-C_3N_4)已被广泛用于光催化、水分解、光子检测器、电池、以及光电阴极.与其他光催化材料相比,g-C_3N_4具有价格低廉,易制备,无毒无污染等优点.此外,C_3N_4具有适宜的带隙(2.7 eV),能有效地吸收可见光.有关C_3N_4的光催化研究很多,但是其降解效率受限于电子空穴对的快速复合.因此,为了提高C_3N_4光催化反应效率,需要对其进行改性.磁铁矿(Fe_3O_4)广泛用于光催化和芬顿/光-芬顿反应.Fe_3O_4晶体具有反式尖晶石结构,其中Fe~(2+)和Fe~(3+)同时存在.研究表明,磁铁矿在酸性条件下催化效果显著,然而,它的比表面积小,随着反应时间的推移,铁离子会溶出,不利于有机物降解反应.因此,近来许多研究着重于磁铁矿复合物的制备,以提高磁铁矿的稳定性及催化性能.本文通过惰性氛围高温焙烧三聚氰胺制备了g-C_3N_4,再通过氯化铁和乙酸钠在乙醇中于180°C溶剂热反应,制备Fe_3O_4纳米粒子,最后通过静电自组装过程制备出Fe_3O_4/g-C_3N_4纳米复合材料.利用X射线衍射(XRD),扫描电子显微镜(SEM)及X射线光电子光谱(XPS)等手段验证其组成和结构.XRD结果表明,Fe_3O_4/g-C_3N_4复合材料中可以清晰看到Fe_3O_4和g-C_3N_4的衍射峰,说明这两种材料的晶相得以保持.SEM和TEM结果表明,Fe_3O_4纳米颗粒很好地附着在g-C_3N_4薄片上.XPS结果表明,氮化碳中存在典型的三种N峰;此外还存在铁的两种价态.光-芬顿活性测试中,相同条件下,Fe_3O_4/g-C_3N_4在60 min内将罗丹明B(RhB)几乎降解完全,而单组份的Fe_3O_4或g-C_3N_4对RhB的降解小于50%.可见,复合后的Fe_3O_4/g-C_3N_4光催化性能得到很大提升.单g-C_3N_4本身由于快速的电子空穴复合以及对双氧水的弱亲和力,因而对Rh B降解效果差.单独的Fe_3O_4由于在中性或者碱性条件下反而会抑制光催化芬顿活性.对于制备的Fe_3O_4/g-C_3N_4复合材料,具有以下优点:(1)电子在Fe~(3+)和g-C_3N_4的LUMO轨道上的转移降低了电子-空穴对的复合;(2)Fe_3O_4均匀分布在g-C_3N_4上,对于H_2O_2的吸附提供了有利的高比表面积;(3)Fe_3O_4和g-C_3N_4之间的界面相互作用使得Fe_3O_4的稳定性提高.通过降解RhB的动力学研究,得到反应速率为0.02 min~(–1),属准一级反应.分析检测结果表明,光-芬顿反应后,RhB分子被彻底矿化降解,没有中间产物生成,最终降解为CO_2和水.同时,通过对辣根过氧化物酶(HRP)模拟催化进行测试,以3,3',5,5'-四甲基联苯胺盐酸盐(TMB)作为基质,同时添加双氧水和Fe_3O_4/g-C_3N_4,在pH值为4.5条件下,TMB可以被有效氧化.实验表明,Fe_3O_4/g-C_3N_4添加量为25 mg/ml时,对TMB氧化性能最佳.复合催化剂还用于多巴胺的催化氧化反应.结果表明,多巴胺的氧化反应速率常数为1.21 min~(–1),属一级动力学反应.总之,复合材料提高了Rh B的光催化降解活性和稳定性;对TMB和HRP亲和性好,表现出高的类过氧化酶反应活性;有效的多巴胺氧化反应表明其有望用于生物基氧化反应中.实验结果表明,本文发展的Fe_3O_4/g-C_3N_4复合材料为其他类型复合材料的制备与应用提供了新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号