首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李仁贵 《催化学报》2017,38(1):5-12
能源是人类生存和发展的物质基础,太阳能作为最丰富的清洁可再生能源之一,其开发利用受到了世界范围内的广泛关注.通过光催化分解水制氢将太阳能以化学能的形式储存起来不仅能利用太阳能制取高燃烧值的氢能,同时氢能可与CO2综合利用结合起来,在减少碳排放的同时,生成高附加值的化学品,实现碳氢资源的优化利用.光催化分解水制氢在过去的几年里取得了长足的进步,本综述从三种研究广泛的太阳能光催化分解水制氢途径(即光催化、光电催化以及光伏-光电耦合途径)入手,分别简要介绍了太阳能分解水制氢在近几年取得的最新研究进展.利用纳米粒子悬浮体系进行光催化分解水制氢成本低廉、易于规模化放大,被认为是未来应用最可行的方式之一,但是太阳能转化利用效率还偏低.最新报道的SrTiO3:La,Rh/Au/BiVO4:Mo光催化剂其太阳能到氢能(STH)转化效率已超过了1.0%,相比之前报道的大多数光催化剂体系有了数量级的飞跃,让人们对太阳能光催化分解水制氢未来的规模化应用看到了希望.高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等,均是粉末光催化剂体系研究最为关键的问题;光电催化分解水在过去2–3年内发展迅速,在一些典型的光阳极半导体材料(如BiVO4和Ta3N5等)体系上太阳能利用效率超过2.0%以上.最新研究发现,在Ta3N5光阳极的研究中,通过在光电极表面合理设计和构筑空穴传输层和电子阻挡层等策略,光电流和电极稳定性均可得到大幅度提升,光电流大小甚至可接近Ta3N5材料的理论极限电流.如果能进一步在过电位和电极稳定性上取得突破,该体系的STH转化效率还会得到大幅度改进.此外,光阴极的研究也越来越受到了研究者的关注;光伏-光电耦合体系在三种途径里面太阳能制氢效率最高,在多个体系上已超过10%以上,最近报道的利用多结GaInP/GaAs/Ge电池与Ni电催化剂耦合,其太阳能制氢效率可达到22.4%.虽然该种制氢途径的效率已超过其工业化应用的要求,但是光伏电池的成本(尤其是多结GaAs太阳电池)极大限制了其大面积规模化应用,同时还要考虑电催化剂的成本和效率等,光伏-光电耦合制氢是成本最高的太阳能制氢途径.需要指出的是,光伏-光电耦合制氢有望在一些特殊的领域最先取得实际应用,如为外太空航天器、远洋航海以及孤立海岛等传统能源无法满足的地方提供能源供给.总之,太阳能分解水制氢研究取得了一系列重要进展,太阳能制氢效率得到了大幅度提升,也是目前世界范围内关注的研究热点之一,不仅具有强的潜在工业应用背景,更为基础科学提供了诸多新的研究课题.这一极具挑战的研究领域,在先进技术快速发展和基础科学问题认识不断提高的基础上,不久的将来,有望在不久的将来在基础科学和应用研究方面取得重大突破.  相似文献   

2.
祁育  章福祥 《化学学报》2022,80(6):827-838
利用太阳能光催化分解水制氢是解决能源环境问题并实现太阳能有效转化和储存最有前途的技术之一, 这一“圣杯”式反应经过几十年不懈努力取得了诸多重要研究进展. 本文将综述光催化分解水制氢体系的基本概念、活性测试方法与注意事项、光催化材料种类等; 并从光催化分解水制氢的光吸收、光生电荷分离和表面催化反应等基本过程和关键科学问题的角度总结其重要研究进展, 最后对于太阳能光催化分解水制氢的挑战和潜在的发展方向进行分析和展望. 希望通过本综述的简要介绍能让刚从事光催化分解水制氢研究的青年科技人员清晰地了解掌握该领域的一些基本概念、操作规范、研究总体进展和现状等.  相似文献   

3.
周定华  范科 《催化学报》2021,(6):904-919
为了解决能源危机与环境污染问题,发展一种可再生的清洁能源至关重要.太阳能是一种取之不尽用之不竭的清洁能源,而氢气是一种良好的能源载体.利用太阳能光电催化水分解制氢,是一项有望能够解决能源与环境问题的技术,具有很大的应用前景.其中,氧化铁因为具有合适的能带位置与带隙、良好的稳定性与廉价无毒等优点,成为一种理想的光阳极材料.但是,在实际的测试中,氧化铁仅仅只能得到一个较低的光电转换效率,这可能是因为其较短的空穴扩散距离、较低的电导率以及极度缓慢的水氧化反应动力学所致.整个光电催化水氧化可分为三个过程,即光吸收过程、电荷分离过程以及表面空穴注入过程.这三个过程的效率共同决定了器件的太阳能转化效率.鉴于此,本文将从如何提高这三个效率的角度出发,总结近期研究报道中提高氧化铁光电催化分解水效率的一些策略.光吸收过程是指半导体中价带的电子在吸收具有一定能量的光子后发生跃迁,产生空穴-电子对的过程.其光子的损失主要来源于光的反射、透射以及半导体吸收边的限制.提高光吸收效率的主要策略包括制备具有特定纳米结构的氧化铁电极、利用表面等离子体共振效应以及组成双光吸收系统和掺杂等.电荷分离过程指的是受光激发产生...  相似文献   

4.
近年来,随着一次能源过度消耗所带来的能源和环境问题日益突出,开发廉价、可持续的清洁能源备受关注.光催化分解水制氢可利用太阳能普遍率高和几乎免费等特点制取燃烧热值高、燃烧产物无污染的氢气能源.自从1972年日本的Fujishima教授和Honda教授首次发现TiO2单晶电极光催化分解水可以产生氢气以来,光催化制氢被认为是实现可持续制氢最有潜力的方法之一.有效地将太阳能转换为化学能的关键是设计高效的电荷分离和运输结构.然而,现有的大多数半导体光催化剂因缺少活性位点、光生载流子易复合等缺点而无法达到较高的转换效率.因此,如何提高半导体光催化产氢的转换效率是现阶段面对的重要问题.在众多解决方法中,助催化剂的引入可以为光催化制氢反应增加活性位点,促进光生载流子的有效分离,进而有效地提高半导体光催化产氢速率.本文总结了多种不同类型的助催化剂应用于光催化产氢研究的最新进展,详细讨论了助催化剂在增强光吸收、提供活性位点、增加催化剂稳定性和促进电荷分离等方面的作用,阐明了助催化剂在光催化分解水制氢中的反应机理,同时还提出了光催化制氢的未来研究和预测.本文将助催化剂分为以下几种类别进...  相似文献   

5.
光催化制氢作为一种具有前景的能源转化方式,受到了广泛关注。但是光催化过程中的三个步骤(光吸收、载流子分离、表面反应)效率较低,目前难以实现工业应用。研究者们对光催化的机理进行了深入研究,并提出了多种策略来调节半导体光催化剂的物理化学性质,以期有效提高光催化剂对可见光的吸收,降低光生载流子的复合,加速表面反应。上述策略包括:制造缺陷、局域表面等离子体共振、元素掺杂、异质结构建、助催化剂负载等。深入研究上述改性策略能够为设计制备高效稳定的光催化剂提供指导。因此,本综述聚焦于优化光吸收、载流子分离、表面反应的机理和改性光催化剂的制氢应用,并对构建高效制氢光催化剂的趋势做出了展望。  相似文献   

6.
<正>2014年4月4日,中国科学院大连化学物理研究所洁净能源国家实验室太阳能研究部李灿院士团队和昆士兰大学纳米材料中心逯高清(Max Lu)、王连洲教授团队合作,在光电催化-化学耦合分解硫化氢研究中取得重要进展,相关研究成果发表在德国《应用化学》(Angew.Chem.Int.Ed.2014,doi:/10.1002/anie.201400571)上,并被评为"hot paper"(热点文章)。  相似文献   

7.
光电催化分解水系统能直接将收集的电子与空穴用于分解水,将太阳能转化成了具有高能量密度的氢气,是一种集太阳能转化和储存于一体的高效绿色能源系统。光阴极和光阳极串联要求其在工作状态下两电极通过的总电流必须一致,低效率的一端将会限制整个体系的反应速度,因此对于光阳极材料的系统研究具有十分重要的意义。理论预测表明,基于部分可见光响应的半导体光阳极能带间隙计算得到的极限太阳能制氢转化效率达到了15%。但实际上由于光催化的整个过程是一个多步反应,各个步骤上发生的光生载流子的复合和损失导致了目前合成的相关电极材料的转换效率远低于理论水平。一般可以认为光催化过程包括五个步骤:光电极材料中电子的光致激发而产生电子-空穴对、电子和空穴由于能带弯曲的反向分离和传递、电子(或空穴)通过半导体-电解液界面的注入水中析氢(或析氧)、载流子的复合以及反应物和产物的传质过程。由于这些过程的进行效率与电极材料的本质特性和性能密切相关,为了评估材料性能而引入的一些效率指标往往和这几个步骤相对应。本文首先简要介绍了评价光阳极的一些效率计算以及它们与上述各个步骤的内在联系。最后,在前人和最近的研究基础上总结了几种对光阳极材料的主要提升策略,包括形貌控制、元素掺杂、异(同)质结和表面修饰等改性方法,对这些改性方法和各步骤效率之间的联系作了简单的介绍。  相似文献   

8.
氢气是一种可替代传统燃料的理想清洁能源,利用光催化技术分解水制氢是制取氢气的有效途径之一。无机半导体光催化材料具有较高的活性和稳定性,且原料丰富,易加工改性.目前针对光催化技术的应用,大量的研究工作都集中在开发可见光响应光催化剂,以提高对可见光的利用率.同时,非金属聚合物半导体因其特殊的光电性质,在光催化应用研究中越来越受到关注,如庚嗪基微孔聚合物(HMP)和共价三嗪基骨架(CTF).石墨相碳化氮(g-C_3N_4)是一种典型非金属二维聚合物半导体,被认为是一种非常有价值的光催化材料.然而,其较低的光生电子的传输效率限制了其实际应用,因此诸多研究对g-C_3N_4的物理化学结构进行优化,如半导体耦合、共聚合、纳米结构设计和掺杂.非金属掺杂是一种有效的方法,由于原子电负性差异引起的电荷分离可有效改善载流子传输效率,且保持半导体的非金属性质.通过O,B,P和S等掺杂可以扩大可见光响应范围,并调节能带位置以改善光催化活性.除了常见的单一非金属掺杂,金属和非金属元素或多非金属元素共掺杂的办法同样可提高g-C_3N_4的光催化性能.本工作通过两步法对双氰胺、尿素和碘化1-乙基-3-甲基咪唑的混合物直接热聚合,合成C-I共掺杂的多孔g-C_3N_4,其在可见光照射下表现出较高的产氢活性和稳定性.采用X射线衍射(XRD)、X射线光电子能谱(XPS)、荧光光谱(PL)和电化学实验等方法对多孔掺杂g-C_3N_4结构进行详细表征和分析.在助催化剂Pt和电子牺牲剂(三乙醇胺)存在的条件下,采用可见光(400 nm)照射分解水产氢的方法评价其光催化活性.结果表明,后热处理和碘离子液掺杂对g-C_3N_4材料的结构和性能具有较大影响.C-I共掺杂和后热处理使催化剂产物颗粒尺寸减小,形成多孔片层状紧密堆积,比表面积和孔隙率显著增加,吸收带边发生蓝移.后热处理使样品层间距减小,聚合度增加,有利于电荷传输,C-I共掺杂后出现更多的缺陷,但没有改变其层状堆积的特性.XPS结果表明,样品中碘元素以I~-和I~(5+)的形式存在,改性后催化剂C/N比明显增加,sp~2芳环N含量增加,表面氨基含量降低,表明后热处理和C-I共掺杂没有改变多孔g-C_3N_4的基本骨架,共轭结构更加完善.PL和光电流结果表明,改性后样品的PL强度均显著降低,并且随着掺杂量的增加而逐渐降低,表明共掺杂可抑制光生电荷的复合.电化学测试结果表明,后热处理和C-I共掺杂的样品界面电荷转移电阻降低,导电率和电荷迁移率增加,从而有助于提高光催化性能.光解水产氢性能测试表明,后热处理和C-I共掺杂有利于催化剂产氢速率的提高,改性后CNIN_(0.2)的产氢速率达168.2μmol/h,是纯氮化碳的9.8倍.经过多次循环测试,其产氢性能保持稳定而没有显著下降,表明其产氢稳定性较好.  相似文献   

9.
正Solar‐driven water splitting for hydrogen production is an ideal way to solve the problems of the energy crisis and envi‐ronment pollution, and is considered as the "Holy Grail" of chemistry [1]. Typically, photocatalytic water splitting can be divided into three processes: (1) photoabsorption and photo‐excitation of the semiconductor, (2) the excited carriers sepa‐  相似文献   

10.
因为导电高分子结合了金属与塑料的优点,他们一直受到很大的关注。但是他们的应用受到一些因素的影响,包括他们的电学性质,稳定性和可加工性。近来,导电高分子的性能得到很大的提高。他们在许多领域的重要应用被论证,比如透明电极,可拉伸电极,神经界面,热电转换和能量储存。这篇文章简单综述了导电高分子的电导提高和它们在热电转换,超级电容器和电池的应用。  相似文献   

11.
理解和调控材料表面性质是研究非均相反应的重点.对于电化学和光电化学驱动的表面催化反应,构建表面活性位点并理解其相关的反应机理是众多研究人员关注的重点.除表面活性位点外,表面电荷传输通道的存在对于(光)电化学催化反应也同样重要,因为其决定了传输到(光)电极表面有效电荷的数量.然而,目前关于如何构建表面电荷传输通道的研究较少.本文以经典的钼掺杂钒酸铋光阳极为例,通过简单的电化学还原处理在其表面原位构建了电荷传输通道,进而实现了水氧化光电流密度约8.5倍的提升.通过对比电化学处理前后钼掺杂钒酸铋及氧化钼电极的X射线衍射图谱、拉曼光谱、X射线光电子能谱发现,电化学处理诱导了电极表面的羟基化反应并且产生了Mo5+组分.这表明电化学处理诱导的氢钼青铜相(HyMoOx)可能在钼掺杂钒酸铋光阳极表面形成了高效的电荷传输通道.包括电荷分离和注入效率、开路电压、阻抗谱以及稳态和瞬态荧光光谱等(光)电化学测试结果表明,这些表面电荷传输通道的存在大幅度提高了钼掺杂钒酸铋光阳极的体相电荷分离和传输效率.进一步通过构建电化学处理前后钼掺杂钒酸铋和氧...  相似文献   

12.
正As natural photosynthesis does, direct conversion of solar energy into the storable form of chemical energy is an intriguing technology for solar energy utilization. Due to increasing concerns of energy and environmental problems caused by the consumption of fossil fuels, production of  相似文献   

13.
光催化分解水制氢和还原CO2是太阳能利用领域的研究热点,对清洁能源的转化具有重要意义.石墨相氮化碳(CN)作为一种非金属半导体,是一种非常有开发潜力的光催化材料.然而限于其聚合物本质,光催化效率仍有待进一步提高.原位非金属掺杂可以利用元素电子结构调控电荷分布,优化光生电荷传输性能.同时,半导体复合,尤其是2D层状复合结构的构筑,可充分发挥2D半导体的优势,合适的能带交错有利于光生电荷的传输,可在一定程度上加速催化反应的进行.本文首先以草酸为氧掺杂源,采用二步煅烧法合成氧掺杂氮化碳纳米片催化剂(CNO).在二次煅烧和氧掺杂共同作用下,增大了CN层间距和多孔性,颗粒尺寸减小,同时增强了对光的吸光性,拓展了可见光吸收范围.接下来采用一步水热合成法得到ZnIn2S4@CNO(ZC)复合材料,在可见光照射下通过分解水制氢和CO2还原反应对复合材料进行光催化还原性能评价.采用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、荧光光谱(PL)、光电化学测试等方法对ZC进行详细的结构表征和分析.XRD和XPS结果表明,经过一步直接水热可得到层状ZC复合材料,高倍TEM进一步证实二者形成均一的2D异质复合材料.N2-吸附-脱附曲线表明,复合材料具有较大的比表面积和均一的孔结构分布,主要得益于O掺杂CNO纳米片的多孔性结构.光电性质测试结果表明,相比于CNO,复合材料具有降低的荧光发射强度和延长的荧光寿命,表明复合产物显著抑制了光生电荷的复合.电化学测试进一步表明,复合异质结的构筑有利于光生载流子的产生,同时降低了界面电荷转移电阻,提高了电荷迁移速率.因此,多孔2D异质结构的构筑对促进CN基半导体光催化还原具有重要作用.在可见光照射下(λ>400 nm),复合材料表现出优异的光催化还原性能,且随着CNO含量的增加催化活性不断提高,其中ZC 40%(CNO质量比40%)具有最佳的催化活性,其产氢速率达188.4μmol/h,约是ZnIn2S4和CNO的2.1倍.同时,光催化还原CO2测试表明,复合材料具有显著提高的CO和CH4产率,其中CO为主要反应产物.ZC40%的CO产生速率为12.69μmol/h,分别是ZnIn2S4和CNO的2.2倍和14.0倍.对催化剂进行连续光反应,结果表明,复合催化剂具有优异的结构稳定性和活性稳定性,能够持续发生光还原反应制取H2和CO.  相似文献   

14.
利用光催化反应制取氢气是满足未来能源可持续利用的一个很有效的方法.然而,如何去开发和利用高效且稳定的非金属光催化剂用于产氢反应是目前所面临的一个巨大的挑战.最近,非金属纳米碳基材料由于其诸多优点而吸引了人们广泛的关注,比如价格低廉、环境友好和良好的稳定性等.另外,石墨烯量子点由于具有很好的水溶性、低毒性,良好的生物兼容性和很好的光学稳定性等优点而被当作是一种能够替代传统量子点的很有前途的材料.除此之外,石墨烯量子点的带隙还可以通过控制其颗粒大小和其表面所带的官能团来进行灵活调控.另一方面,金属磷化物(磷化镍、磷化钴等)已经被证实了是很好的水分解制氢的非贵金属助催化剂,它们可以加快光生电子和空穴的分离,从而提高光催化活性.本文利用非金属光敏剂石墨烯量子点与非贵金属助催化磷化镍进行耦合制备复合光催化剂,实现了在可见光照射下进行光催化制氢.在最优条件下,复合光催化剂的产氢速率为空白石墨烯量子点的94倍,甚至与在空白量子点上负载1.0wt%Pt的产氢速率相当.产氢速率的大幅度提升可能是由于在石墨烯的量子点和磷化镍之间形成了半导体–金属接触界面,从而更有效地促进了光生载流子的传输过程.石墨烯量子点本身有着很好的水溶性,从而利用机械搅拌的方法与磷化镍进行耦合,并在可见光下进行产氢反应.本文采用红外光谱(FTIR)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和荧光光谱(PL)等表征手段研究了空白量子点表面所带的官能团、尺寸大小和光学性能.采用TEM和PL等表征手段来研究复合光催化剂的形貌和产氢性能提高的原因.对于空白量子点,FTIR结果表明,其表面带有–OH等官能团;TEM结果表明,它的尺寸大小大概在3.6±0.5 nm;UV-Vis结果表明,其在可见光区域有着很强的光吸收;PL结果表明,其在波长约为540 nm处有着很强的吸收峰,所对应的带隙约为2.3 eV.对于复合光催化剂,TEM测试结果表明石墨烯量子点在磷化镍上随机分布;从PL结果可见,复合光催化剂的荧光强度明显降低,说明了光生电子从量子点到磷化镍的有效转移,这也是光催化活性提高的重要原因  相似文献   

15.
随着工业进步和人口增长,大量难降解的有机污染物被排放到水体中,环境污染成为一个日益严峻的全球性问题.大多数有机污染物具有致癌性、诱变性、细菌性和复杂多样性,难以通过传统的化学、生物和光解等处理方法有效去除,亟需探索环保有效的去除污染物技术.光催化技术可以直接利用太阳光进行污染物降解,对环境友好,然而,其实际应用受到太阳能利用率低、催化剂分离困难、催化剂稳定性低以及矿化率低等因素的限制.近年来,将光催化技术与其他技术耦合成为解决上述困难的新趋势.对光催化耦合技术的最新进展和工作机制进行系统地梳理和总结对进一步推动去除污染物技术的发展具有重要意义.本文系统总结了光催化耦合技术在废水处理中的最新研究进展.首先,简要介绍了光催化的机理和研究进展,总结了光催化技术在废水处理过程中存在的问题.然后,简要介绍了光催化耦合技术在解决上述问题过程中的研究进展和发展趋势.其后,通过重点介绍一些典型研究,详细地阐述了光催化技术与传统水处理技术(吸附法、膜分离法、生物降解法)、高级氧化技术(电催化法、臭氧化法、Fenton法、过硫酸盐法)和其他技术(热催化法、等离子体法、超声波法、压电催化法、磁场法)的耦合机...  相似文献   

16.
化石能源的发现和应用是工业文明快速发展的基础.然而,化石燃料的过渡开发和消耗导致能源短缺和环境污染问题日益突出.因此,迫切需要采用清洁能源替代化石能源.其中,氢气(H2)因具有热值高、无污染等优点而被认为是最有前途的清洁能源之一.目前,应用较多且比较成熟的制氢技术有电催化法、部分氧化法、自热重整法、甲醇重整法、蒸汽重整法和生物法.但是,这些技术的能耗和成本都比较高.光催化制氢技术可实现太阳能的转化和利用,被认为是解决能源短缺和环境污染问题的有效方法之一,受到广泛关注.光催化制氢主要采用贵金属催化剂,但贵金属稀缺且成本高,严重限制了其大规模应用.因此,迫切需要寻找一种便宜、高效和稳定的光催化制氢催化剂.碳纳米结构材料(CNMs)具有优异的结构和半导体性能,包括良好的导电性、较大的比表面积、较好的热稳定性和化学稳定性,可以有效地参与光催化制氢.此外, CNMs和光催化剂的结合可以增强反应物的吸附位点和活性中心,加速电荷分离和传输,抑制光激发的电子-空穴对的复合.同时, CNMs可以减少催化剂颗粒的聚集,改善催化剂颗粒的分布.CNMs还具有光敏性或光热效应,可以大大提高光催化制氢的效率.特别...  相似文献   

17.
本研究以金纳米粒子为电子介质,制备了具有氧空位的Au-OVs-BiOBr-P25 Z-scheme三元光催化剂。采用全分解水制氢方法评价了该三元光催化剂的光催化活性。Au-OVs-BiOBr-P25在紫外-可见照射下,产氢速率可达384μmol/(h·g)。UV-vis-DRS和瞬态光电流谱表明,Au-OVs-BiOBr-P25光催化活性的提高主要是由于其较宽的光响应范围和有效的载体分离。此外,全分解水是通过两电子途径发生的。该研究结果为开发更高效的光催化剂提供了新的思路。  相似文献   

18.
CoO/SrTiO3的合成及光催化分解水制氢性能   总被引:1,自引:0,他引:1  
通过添加碱金属化合物矿化剂,以Sr(NO3)2和钛酸四丁酯的水解产物TiO(OH)2为原料进行固态反应,制得结晶完整性较好的SrTiO3粉末.再由浸渍法负载CoO,制备出光催化分解水催化剂CoO/SrTiO3,在400 W高压汞灯照射下,产氢速率可达到480μmol•g cat-1•h-1. SEM、UV-Vis漫反射光谱表征结果显示,合成SrTiO3时加入KOH矿化剂可使固态反应完全,SrTiO3结晶完整性提高,进而促进其光催化活性提高.确定了适宜的KOH矿化剂用量为2.0%(w).  相似文献   

19.
将含有不同还原型烟酰烟腺嘌呤二核苷酸(NADH)活性中心模拟物的有机配体H_2L~1和H_2L~2与钴离子配位自组装获得2例具有氧化还原活性且带有正电荷的金属-有机大环Co-L~1和Co-L~2。选择阴离子型钌基光敏剂[Ru(dcbpy)_3]~(4-)(dcbpy=2,2′-联吡啶-4,4′-二羧酸)作为光敏中心,金属-有机大环结构作为质子还原催化剂,通过静电作用力将光敏中心封装在其空腔内部以加速光诱导电子转移(PET)过程,构建了人工光合成体系并应用于光解水制氢研究。相比于未修饰NADH模拟物的金属-有机大环Co-L~3以及未修饰NADH模拟物但配位环境相同的单核催化剂Co-L~4,由Co-L~1和Co-L~2构建的金属-有机大环主客体超分子体系的光催化产氢效率分别提高1.6和6倍,可能是由于NADH活性中心模拟物的引入以及主客体超分子体系的形成有利于光敏中心与催化中心之间的光致电子转移过程。  相似文献   

20.
太阳光驱动的光催化分解水产氢是一种绿色制氢技术,并以氢为载体可实现太阳能向化学能的转化.目前开发高效、稳定的可见光催化剂仍是本领域的研究热点.在各类光催化材料中,Cd_(0.5)Zn_(0.5)S固溶体比Ti O_2及g-C_3N_4具有更优异的光催化产氢活性,但它一般为团聚了的纳米颗粒或纳米微球,表面积小,比表面反应迟缓,从而限制了其实际应用.通常,超薄多孔二维结构光催化剂具有高比表面积,能够为反应物分子与催化剂之间提供大量接触界面并促进传质,此外,特定晶面暴露赋予了其大量不饱和配位表面原子,使反应物分子更容易在催化剂表面吸附活化,提升表面催化反应动力学.本文首先采用乙二胺与水的混合溶液制备了无机有机杂化的硫化锌-乙二胺(记为:Zn S(en)_(0.5)).随后,分别以Zn S(en)_(0.5)为硬模板、以乙二醇为反应介质、氯化镉为镉源,通过溶剂热阳离子交换得到了无机有机杂化的Cd_(0.5)Zn_(0.5)S(en)_x中间产物.最后,将Cd_(0.5)Zn_(0.5)S(en)_x在纯水中进行水热反应脱除晶格内乙二胺分子得到了2D介孔超薄Cd_(0.5)Zn_(0.5)S纳米片.TEM测试发现,纳米片表面存在大量孔洞,其主要源于Cd_(0.5)Zn_(0.5)S(en)_x的相变过程及其晶格内乙二胺分子的逃逸导致的晶格畸变.AFM观察结果表明,最终产物Cd_(0.5)Zn_(0.5)S纳米片厚度约为1.5 nm;其比表面积可达63.5 m~2/g,几乎是相应纳米颗粒的两倍.以三乙醇胺(TEOA)为牺牲剂时,Cd_(0.5)Zn_(0.5)S纳米片的产氢速率达到19.1 mmol·h~(-1)·g~(-1),是相应纳米颗粒的两倍多.即使在纯水中,Cd_(0.5)Zn_(0.5)S纳米片产氢速率仍可达到1395μmol·h~(-1)·g~(-1),超过了目前所报道的未加修饰的光催化剂的活性.其优异的活性源于其独特的结构优势,包括载流子迁移距离的缩短、表面不饱合原子及比表面积的增大.但在纯水中其严重的光腐蚀仍然亟待克服.此外,为进一步增强其活性,通过机械复合的方法得到了Ni Co_2S_4/Cd_(0.5)Zn_(0.5)S二元复合光催化剂,其在TEOA为牺牲剂时制氢速率可达62.2 mmol·h~(-1)·g~(-1),在纯水制氢速率达到2436μmol·h~(-1)·g~(-1).电化学、UPS及EPR分析表明,Ni Co_2S_4与Cd_(0.5)Zn_(0.5)S纳米片间形成了肖特基接触,进一步促进了载流子分离能力,提高了复合物的产氢活性.以本工作为基础,还可制备其他高活性的CdZnS-基功能光催化材料用于太阳能转化或其他领域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号