首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李仁贵 《催化学报》2017,38(1):5-12
能源是人类生存和发展的物质基础,太阳能作为最丰富的清洁可再生能源之一,其开发利用受到了世界范围内的广泛关注.通过光催化分解水制氢将太阳能以化学能的形式储存起来不仅能利用太阳能制取高燃烧值的氢能,同时氢能可与CO2综合利用结合起来,在减少碳排放的同时,生成高附加值的化学品,实现碳氢资源的优化利用.光催化分解水制氢在过去的几年里取得了长足的进步,本综述从三种研究广泛的太阳能光催化分解水制氢途径(即光催化、光电催化以及光伏-光电耦合途径)入手,分别简要介绍了太阳能分解水制氢在近几年取得的最新研究进展.利用纳米粒子悬浮体系进行光催化分解水制氢成本低廉、易于规模化放大,被认为是未来应用最可行的方式之一,但是太阳能转化利用效率还偏低.最新报道的SrTiO3:La,Rh/Au/BiVO4:Mo光催化剂其太阳能到氢能(STH)转化效率已超过了1.0%,相比之前报道的大多数光催化剂体系有了数量级的飞跃,让人们对太阳能光催化分解水制氢未来的规模化应用看到了希望.高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等,均是粉末光催化剂体系研究最为关键的问题;光电催化分解水在过去2–3年内发展迅速,在一些典型的光阳极半导体材料(如BiVO4和Ta3N5等)体系上太阳能利用效率超过2.0%以上.最新研究发现,在Ta3N5光阳极的研究中,通过在光电极表面合理设计和构筑空穴传输层和电子阻挡层等策略,光电流和电极稳定性均可得到大幅度提升,光电流大小甚至可接近Ta3N5材料的理论极限电流.如果能进一步在过电位和电极稳定性上取得突破,该体系的STH转化效率还会得到大幅度改进.此外,光阴极的研究也越来越受到了研究者的关注;光伏-光电耦合体系在三种途径里面太阳能制氢效率最高,在多个体系上已超过10%以上,最近报道的利用多结GaInP/GaAs/Ge电池与Ni电催化剂耦合,其太阳能制氢效率可达到22.4%.虽然该种制氢途径的效率已超过其工业化应用的要求,但是光伏电池的成本(尤其是多结GaAs太阳电池)极大限制了其大面积规模化应用,同时还要考虑电催化剂的成本和效率等,光伏-光电耦合制氢是成本最高的太阳能制氢途径.需要指出的是,光伏-光电耦合制氢有望在一些特殊的领域最先取得实际应用,如为外太空航天器、远洋航海以及孤立海岛等传统能源无法满足的地方提供能源供给.总之,太阳能分解水制氢研究取得了一系列重要进展,太阳能制氢效率得到了大幅度提升,也是目前世界范围内关注的研究热点之一,不仅具有强的潜在工业应用背景,更为基础科学提供了诸多新的研究课题.这一极具挑战的研究领域,在先进技术快速发展和基础科学问题认识不断提高的基础上,不久的将来,有望在不久的将来在基础科学和应用研究方面取得重大突破.  相似文献   

2.
“双碳目标”的实现需要精准的政策引导和开发可替代的清洁能源. 近年来, 氢能由于具有来源丰富、热值高、清洁低碳、应用场景多样等特点, 受到了学者们越来越多的关注. 在传统制氢技术中, 化石燃料制氢技术应用最为广泛, 但其制氢反应过程造成的能耗和温室气体释放量较大. 而光催化分解水制氢技术是将太阳能转换为氢能, 将太阳能以化学能的形式储存起来, 这样不仅能利用太阳能制取氢气, 而且可以将氢能与CO2结合起来生产高附加值的化学品, 在减少碳排放的同时, 实现碳氢资源的综合利用. 综述了可实现太阳能制氢的光催化制氢(PC)、光电催化制氢(PEC)和光伏电催化耦合制氢(PV-EC)技术的研究进展, 阐释了相关技术的基本原理, 介绍了制氢技术中的关键材料, 对三种制氢技术发展过程中太阳能制氢(STH)转化效率、材料稳定性的相关研究进行了详细总结. 最后对三种太阳能制氢技术面临的关键挑战和未来发展方向进行了探讨和展望.  相似文献   

3.
袁丽秋 《化学教育》2006,27(5):8-10
面对日益枯竭的能源危机,氢能是一种洁净、最有前景的替代能源。目前在各种制氢的方法中光催化分解水制氢的研究最多,光解水过程中催化剂最关键,本文对利用太阳能光解水的途径、提高光催化反应效率以及光催化剂的开发研究进行了综述。  相似文献   

4.
吴芝  孙岚  林昌健 《电化学》2019,25(5):529
随着人类社会的快速发展和传统能源的急剧消耗,能源紧缺和环境污染已经成为制约人类社会可持续发展的重要因素,构建清洁的环境友好的可再生新能源体系是当前各国高度关注的焦点和重大战略.在众多绿色环保、可持续新能源选项中,半导体光催化制氢因其可利用清洁可再生的太阳能制取高效清洁氢能,有望完全解决能源紧缺和环境污染问题,成为最有应用前景的技术之一. 本文通过概述半导体光催化制氢原理、半导体光电化学及光电稳定性、半导体光催化制氢效率,重点介绍半导体光催化剂、光生电荷分离及光催化制氢体系等方面若干新进展,并对太阳能光催化制氢技术的发展加以评述和展望.  相似文献   

5.
氢能开发是未来解决能源危机和环境污染问题的理想途径之一,利用太阳能光催化分解水制氢被认为是一种极具潜力的制氢技术,而开发高效、廉价的实用性新型光催化剂是实现这一技术的关键,成为当前该领域的研究热点。目前,光催化制氢材料主要集中于无机半导体材料如金属氧化物或硫化物等体系,但这些传统的光催化材料存在可见光响应弱、制备条件苛刻及资源短缺等问题。相对于无机半导体光催化剂而言,有机半导体光催化剂具有合成方法多样、易功能化修饰、能带结构和电子结构易调控等诸多优势,使其在光催化制氢领域具有巨大的应用潜力。尤其是近年来发展起来的有机共轭微孔聚合物材料,具有传统共轭聚合物的半导体特性及高比表面积的多孔特性,成为一类新型的有机光催化剂材料,吸引了众多的研究关注。本文主要综述了近年来有机共轭微孔聚合物在光催化制氢领域取得的进展,并对有机聚合物光催化剂面临的挑战和未来发展方向做了综合性概括。  相似文献   

6.
以TiO2纳米管阵列为光阳极组成的光电解池光电催化分解水是目前光催化制氢领域内研究最广泛的体系之一。本文综述了近年来TiO2纳米管阵列在光电催化分解水制氢领域的最新研究进展,重点阐述了提高TiO2纳米管阵列光电转换效率和产氢速率的方法,指出了目前存在的问题,并对今后的发展提出了展望。  相似文献   

7.
能源危机和日益严重的环境污染问题是目前人类生存和发展面临的严峻挑战,在化石能源日益枯竭的今天,清洁太阳能的转化、储存和利用成为当前研究的热点.利用太阳能光催化分解水制氢,并将太阳能以氢能的形式储存是解决能源问题最理想  相似文献   

8.
祁育  章福祥 《化学学报》2022,80(6):827-838
利用太阳能光催化分解水制氢是解决能源环境问题并实现太阳能有效转化和储存最有前途的技术之一, 这一“圣杯”式反应经过几十年不懈努力取得了诸多重要研究进展. 本文将综述光催化分解水制氢体系的基本概念、活性测试方法与注意事项、光催化材料种类等; 并从光催化分解水制氢的光吸收、光生电荷分离和表面催化反应等基本过程和关键科学问题的角度总结其重要研究进展, 最后对于太阳能光催化分解水制氢的挑战和潜在的发展方向进行分析和展望. 希望通过本综述的简要介绍能让刚从事光催化分解水制氢研究的青年科技人员清晰地了解掌握该领域的一些基本概念、操作规范、研究总体进展和现状等.  相似文献   

9.
太阳能光催化分解水制氢是太阳能制氢的最佳途径之一.选择CdS为敏化剂,制备了可见光响应的CdS复合钛酸纳米管光催化剂.以所制备的光催化剂在不同模拟有机污染物中的光催化产氢活性进行研究,对有机物浓度、pH值等反应参数进行了考察,并对其产氢机理进行了分析.研究发现各类有机物中,甲酸溶液中产氢量活性最高.分别考察了10%、2...  相似文献   

10.
基于半导体的太阳能光催化分解水制氢技术是一种环境友好、潜力巨大的绿色氢能制造方案.常用的块体半导体材料一般具有较弱的可见光吸收、快速的光生载流子复合以及较低的光催化制氢效率等缺点.因此,设计开发具有宽光谱光吸收、稳定性好、催化活性高的太阳能光催化材料是促进光催化制氢发展的关键,也是该研究方向的挑战之一.硫化镉纳米材料是...  相似文献   

11.
光电催化分解水可以将充足的太阳能直接转化存储为绿色清洁的氢能,然而光阳极表面缓慢的析氧反应动力学严重限制了太阳能到氢能的转化效率。我们通过一种简单的S-O键合策略实现BiVO4光阳极与FeNi催化剂的界面耦合(S:BiVO4-FeNi),其光电催化分解水的光电流达到6.43 mA/cm2(1.23 VRHE, AM 1.5G)。进一步研究结果表明:界面S-O键合能够有效实现BiVO4光阳极光生电荷分离并促进空穴向FeNi催化剂表面迁移。同时,S-O键合可以进一步调控FeNi催化剂表面的电荷分布,从而有效提高光电化学分解水析氧活性和稳定性。该工作为设计构建具有高效、稳定的太阳能光电催化分解水体系提供了一种新的研究策略。  相似文献   

12.
陆玲玮  孙小琴  汪亚威  姜璐  徐晓翔 《应用化学》2017,34(11):1221-1239
由于化石能源的快速消耗以及化石能源在燃烧过程中会释放有害气体,所以寻找新的、干净的能源体系迫在眉睫。氢能具有高燃烧值和高效率的优点,成为了目前最有前景的新能源之一,而利用太阳能进行光催化产氢是最符合"绿色化学"的方法之一。根据目前所探究的光催化剂,钙钛矿型光催化剂因其多样性、特征性以及可变性成为了热门的研究体系。钛基钙钛矿材料及其衍生物表现出了许多优异的光催化活性,是太阳能光催化研究领域的研究热点。本文详细综述了钛基钙钛矿材料及其衍生物的结构、改性方式以及在光催化分解水领域的研究进展。  相似文献   

13.
清洁能源的研究和开发为解决化石燃料的日益枯竭问题带来了希望.氢能燃烧热值高,产物零污染,是理想的清洁能源.利用太阳能,通过光催化反应从水中制取氢气,是一条极有发展前景的制氢途径.然而,太阳能光催化制氢的发展受到许多因素的限制,特别是光电子传输过程中的电子-空穴复合及能量损失导致的电子输运效率低以及高的产氢产氧过电位导致水分解过程的势垒增大.自旋电子学的发展,为太阳能光催化制氢中的这些问题提供了解决之道.通过将自旋电子学的思路及原理应用于太阳能光催化制氢,借助自旋输运及电子隧穿可有效提高电子的输运效率,光电子的自旋极化还可降低产氢产氧过电位并抑制副产物的生成.测试表征技术的发展为揭示自旋电子学-太阳能光催化制氢交叉科学的内秉机理做出了重要贡献.然而,目前尚无相关文籍对此类测试表征技术的发展进行总结和评述.考虑到这些测试表征技术在自旋电子学-太阳能光催化制氢交叉科学研究中的重要作用,对它们进行归纳和总结,评述其发展面临的问题与挑战,探索并合理预测其未来的发展方向.  相似文献   

14.
清洁能源的研究和开发为解决化石燃料的日益枯竭问题带来了希望.氢能燃烧热值高,产物零污染,是理想的清洁能源.利用太阳能,通过光催化反应从水中制取氢气,是一条极有发展前景的制氢途径.然而,太阳能光催化制氢的发展受到许多因素的限制,特别是光电子传输过程中的电子-空穴复合及能量损失导致的电子输运效率低以及高的产氢产氧过电位导致水分解过程的势垒增大.自旋电子学的发展,为太阳能光催化制氢中的这些问题提供了解决之道.通过将自旋电子学的思路及原理应用于太阳能光催化制氢,借助自旋输运及电子隧穿可有效提高电子的输运效率,光电子的自旋极化还可降低产氢产氧过电位并抑制副产物的生成.测试表征技术的发展为揭示自旋电子学-太阳能光催化制氢交叉科学的内秉机理做出了重要贡献.然而,目前尚无相关文籍对此类测试表征技术的发展进行总结和评述.考虑到这些测试表征技术在自旋电子学-太阳能光催化制氢交叉科学研究中的重要作用,对它们进行归纳和总结,评述其发展面临的问题与挑战,探索并合理预测其未来的发展方向.  相似文献   

15.
生物质醇/醛是一类重要的生物基平台化合物, 通过催化氧化重整可将其进一步转化为高值含氧化学品或燃料. 太阳能驱动的光电催化技术是实现生物质醇/醛氧化最为绿色高效的途径之一. 与传统光电解水制氢相比, 利用生物质醇/醛氧化来替代阳极析氧过程不仅可以提高阳极产物的附加值, 同时可以提升太阳能到氢能的转化效率. 因此, 光电解水制氢耦合生物质醇/醛氧化对绿氢提效降本和高值化学品合成具有重要意义. 本文综合评述了光电解水制氢耦合生物质醇/醛的氧化反应机理, 总结了目前光电催化技术在生物质醇/醛氧化方面的研究进展, 最后对该领域所面临的机遇和挑战进行了展望.  相似文献   

16.
通过半导体光催化分解水反应实现太阳能向清洁能源氢能的转化,是解决人类面临的能源和环境危机的终极途径之一。该过程的关键是开发宽光谱响应、高效的光催化剂,到目前为止,调控能带结构、制备活性晶面、构建异质结构、负载助催化剂等诸多方法被广泛应用于扩展半导体材料的吸光范围和提高其光催化活性。本文介绍了半导体光解水制氢的基本原理,并综述了该领域的研究进展,重点关注提高半导体光催化活性的方法及其所面临的挑战和瓶颈问题,并结合相关课题组的研究工作提出可能的应对策略。  相似文献   

17.
通过半导体光催化分解水反应实现太阳能向清洁能源氢能的转化,是解决人类面临的能源和环境危机的终极途径之一。该过程的关键是开发宽光谱响应、高效的光催化剂,到目前为止,调控能带结构、制备活性晶面、构建异质结构、负载助催化剂等诸多方法被广泛应用于扩展半导体材料的吸光范围和提高其光催化活性。本文介绍了半导体光解水制氢的基本原理,并综述了该领域的研究进展,重点关注提高半导体光催化活性的方法及其所面临的挑战和瓶颈问题,并结合相关课题组的研究工作提出可能的应对策略。  相似文献   

18.
刘洋  刘建国  李星国 《化学通报》2013,(11):969-975
光催化分解水制氢是获得廉价氢源的最理想途径,光催化剂的研究是此项技术实施的关键。本文从光催化制氢的机理、光催化剂的种类,以及具有d0和d10电子构型的光催化剂的制氢性能三个方面,对目前光催化分解水制氢领域的研究进展进行了总结,提出了光催化分解水制氢存在的问题、所面临的挑战以及该领域未来发展的方向。  相似文献   

19.
近年来,随着一次能源过度消耗所带来的能源和环境问题日益突出,开发廉价、可持续的清洁能源备受关注.光催化分解水制氢可利用太阳能普遍率高和几乎免费等特点制取燃烧热值高、燃烧产物无污染的氢气能源.自从1972年日本的Fujishima教授和Honda教授首次发现TiO2单晶电极光催化分解水可以产生氢气以来,光催化制氢被认为是实现可持续制氢最有潜力的方法之一.有效地将太阳能转换为化学能的关键是设计高效的电荷分离和运输结构.然而,现有的大多数半导体光催化剂因缺少活性位点、光生载流子易复合等缺点而无法达到较高的转换效率.因此,如何提高半导体光催化产氢的转换效率是现阶段面对的重要问题.在众多解决方法中,助催化剂的引入可以为光催化制氢反应增加活性位点,促进光生载流子的有效分离,进而有效地提高半导体光催化产氢速率.本文总结了多种不同类型的助催化剂应用于光催化产氢研究的最新进展,详细讨论了助催化剂在增强光吸收、提供活性位点、增加催化剂稳定性和促进电荷分离等方面的作用,阐明了助催化剂在光催化分解水制氢中的反应机理,同时还提出了光催化制氢的未来研究和预测.本文将助催化剂分为以下几种类别进...  相似文献   

20.
王保伟  孙启梅 《化学通报》2012,(12):1059-1068
实现太阳光光催化水解制氢一直被各国学者认为是最终解决能源和环境问题的最佳途径。有效地实现可见光催化水解制氢技术的关键在于光催化材料的制备及其改性。本文简要介绍了光催化水解制氢的发展现状、存在的困难及如何提高光分解水的效率,重点评述了现阶段研究比较多的光催化材料—TiO2类光催化剂、新型碳材料光催化剂、含氮或硫的光催化材料、双光子系统光催化材料。最后,结合现有的光催化水解现状对其未来的发展趋势及今后该领域的研究重点进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号