共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
通过线性耦合Brusselator模型和Lengyel-Epstein模型,数值研究了双层耦合非对称反应扩散系统中图灵模之间的相互作用以及斑图的形成机理.模拟结果表明,合适的波数比以及相同的对称性是两个图灵模之间达到空间共振的必要条件,而耦合强度则直接影响了图灵斑图的振幅大小.为了保证对称性相同,两个图灵模的本征值高度要位于一定的范围内.只有失稳模为长波模时,才能对另一个图灵模产生调制作用,并形成多尺度时空斑图.随着波数比的增加,短波模子系统依次经历黑眼斑图、白眼斑图以及时序振荡六边形斑图的转变.研究表明失稳图灵模与处于短波不稳定区域的高阶谐波模之间的共振是产生时序振荡六边形的主要原因. 相似文献
4.
反应扩散方程模型常被用于描述生物学中斑图的形成.从反应扩散模型出发,理论推导得到GiererMeinhardt模型的斑图形成机理,解释了非线性常微分方程系统的稳定常数平衡态在加入扩散项后会发生失稳并产生图灵斑图的过程.通过计算该模型,得到图灵斑图产生的参数条件.数值方法中采用一类有效的高精度数值格式,即在空间离散条件下采用Chebyshev谱配置方法,在时间离散条件下采用紧致隐积分因子方法.该方法结合了谱方法和紧致隐积分因子方法的优点,具有精度高、稳定性好、存储量小等优点.数值模拟表明,在其他条件一定的情况下,系统控制参数κ取不同值对于斑图的产生具有重要的影响,数值结果验证了理论结果. 相似文献
5.
6.
采用双层线性耦合Lengyel-Epstein模型,在二维空间对简单正四边和超点阵四边形进行了数值分析.结果表明:当两子系统波数比N1时,随耦合强度的增大,基模的波矢空间共振形式发生改变,系统由简单六边形自发演化为结构复杂的新型斑图,除已报道的超六边形外,还获得了简单正四边和多种超点阵四边形,包括大小点、点线、白眼和环状超四边等斑图.当耦合系数α和β在一定范围内同步增大时,两子系统形成相同波长的Ⅰ型简单正四边;当α和β不同步增大时,由于两图灵模在短波子系统形成共振,系统斑图经相变发生Ⅰ型正四边→Ⅱ型正四边→超点阵四边形的转变;当系统失去耦合作用时,短波子系统波长为λ的Ⅰ型正四边斑图迅速失稳并形成波长为λ/N的Ⅰ型正四边,随模拟时间的延长,两子系统中不同波长的正四边均会经相变发生Ⅰ型正四边→Ⅱ型正四边→六边形的转变. 相似文献
7.
采用双层耦合的Lengel-Epstein模型, 通过改变两子系统图灵模的强度比, 获得了四种的六边形格子态和多种非格子态结构. 模拟结果表明: 反应扩散系统的格子态结构由三套子结构叠加而成, 是两图灵模的波数比和强度比共同作用的结果, 两模的强度比决定了三波共振的具体模式; 另外, 系统选择格子态斑图所需的两图灵模的强度比大于非格子态斑图的强度比; 逐步增加两图灵模强度比, 出现的斑图趋于从复杂到简单变化. 深入研究发现: 不同互质数对(a, b)对应的格子态斑图的稳定性不同, 其中(3, 2)对应的格子态结构最为稳定. 相似文献
8.
9.
采用双层耦合的Brusselator模型, 研究了两个子系统非线性耦合时Turing 模对斑图的影响, 发现两子系统Turing 模的波数比和耦合系数的大小对斑图的形成起着重要作用. 模拟结果表明: 斑图类型随波数比值的增加, 从简单斑图发展到复杂斑图; 非线性耦合项系数在0–0.1时, 系统1中短波模在系统2失稳模的影响下不仅可形成简单六边形、四边形和条纹斑图, 两模共振耦合还可以形成蜂窝六边形、超六边形和复杂的黑眼斑图等超点阵图形, 首次在一定范围内调整控制参量观察到由简单正四边形向超六边形斑图的转化过程; 耦合系数在0.1–1时, 系统1中短波模与系统2失稳模未发生共振耦合仅观察到与系统2相同形状的简单六边形、四边形和条纹斑图.
关键词:
Brusselator模型
非线性耦合
Turing模 相似文献
10.
采用三变量Brusselator扩展模型在二维空间对反应扩散系统中反螺旋波和反靶波进行了数值模拟,利用色散关系和参量的时空变化研究了反螺旋波与反靶波的形成机制和时空特性,分析了方程参数对反螺旋波与反靶波的影响,获得了多种不同臂数的反螺旋波.模拟结果表明:反螺旋波源于波失稳、霍普失稳,或两种失稳的共同作用,而在反靶波中除上述两种失稳外还同时存在图灵失稳,波的传播方向均由外向内;反螺旋波波头的相位运动方向与波的走向相同,且旋转周期随臂数的增加逐渐增大;多臂数的反螺旋波由于受微扰及边界条件的影响,在波头的持续旋转运动中可以向臂数少的反螺旋波发生转变,并且在一定条件下单臂反螺旋波可实现到反靶波的转变;当不活跃中间物质的浓度的扩散系数超过临界值时,波的传播方向发生改变,系统可以实现反螺旋波到螺旋波以及反靶波到靶波的转变. 相似文献
11.
12.
驾驭斑图(pattern)的新方法——空间微扰法 总被引:1,自引:0,他引:1
提出了一种控制斑图(patern)的新方法———空间微扰法.以一个光学系统为例,用这一微扰法成功地稳定、选择和跟踪了不稳定的卷形、方形和六角形斑图.这一具有普适性的新方法极易被应用到实际空间延展非线性系统中. 相似文献
13.
反应扩散系统中螺旋波的失稳 总被引:10,自引:0,他引:10
文章以反应扩散系统为例,介绍了在可激发系统与振荡系统中螺旋波产生、发展、演化的一些基本性质及规律,并讨论了作者近年来对螺旋波的各种失稳途径、时空混沌的产生机理及螺旋波控制方面所做的实验与理论工作,重点讨论了两类螺旋波失稳现象:爱克豪斯失稳与多普勒失稳,两类失稳都使系统从有规律的螺旋波态变为时空混沌(缺陷湍流)态。 相似文献
14.
15.
16.
针对锂离子电池双层电极结构,建立了综合考虑锂扩散、应力、浓度影响的材料属性及集流体弹塑性变形的理论模型.基于所建立的模型,主要研究了在充电过程中集流体可能发生的塑性变形对电极中锂扩散及应力的影响.数值结果表明集流体的塑性变形会减弱其对活性层的约束,这不仅使得集流体和活性层中的应力得到明显缓解,而且还促进了锂在活性层中的扩散,提高了活性层的有效容量.与此同时,研究了集流体的屈服强度和塑性模量这两个参数的影响,结果表明,较小的屈服强度和较小的塑性模量能进一步弱化约束,松弛电极活性层中的应力,并增加其有效充电容量.研究结果为分层电极的结构设计和性能优化提供了一定的参考. 相似文献
17.
18.
采用双水电极介质阻挡放电装置, 在大气压下流动氩气中产生了稳定的条纹斑图, 并采用拍照和电学方法对其产生机理进行了研究. 研究发现, 条纹斑图仅出现在外加电压较低的情况下, 在较高电压下放电会过渡到均匀模式. 低电压下的条纹斑图是由于放电丝沿着气流方向定向移动形成的, 该定向移动速度几乎与电压无关, 主要由气体流量决定. 分析发现放电空间中活性粒子的记忆效应对条纹斑图的形成起决定作用. 电学测量发现放电电流和放电的气隙起始电压都随着气流的增加而减小, 本文对这一现象进行了定性解释. 本文结果对斑图动力学研究和介质阻挡放电的工业应用都具有很重要的意义. 相似文献
19.
20.
在旋波、慢变振幅近似下,求解考虑了驱动场相位扩散后的系统密度矩阵运动方程,并给出了这个三能级梯型系统稳态线性解析解.利用得到的稳态线性解析解分析驱动场相位扩散是如何影响该系统输出无反转激光的.对稳态线性解析解数值计算的结果显示:由于驱动场相位扩散会导致无反转激光增益减小;即使由于驱动场相位扩散引起的线宽足够大,在该系统中仍能够获得无反转激光;线宽往往是破坏无反转激光产生和折射率的提高;因驱动场相位扩散导致无反转激光增益的减小,并不是总能够通过增大驱动场的Rabi频率得到补偿. 相似文献