首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
一、磁性的意义和分类 所渭磁性,从广义上讲,是指物体在不均匀磁场中受力的性质。由受力的强弱又分为强磁性和弱磁性。一般常把强磁性称为磁性(狭义)或铁磁性,而不恰当地把弱磁性称为“无磁性”或“非磁性”。弱磁性又分为抗磁性和顺磁性。在不均匀磁场中物体沿磁场减弱方向受力的性质称为抗磁性,这是一切物体都具有的性质,但有时为其它更强的磁性所掩盖;如水、铜和绝大多数有机分子和生物大分子都是抗磁性物质。在不均匀磁场中,物质沿磁场增强方向受力的性质称为顺磁性,如铝、氧化和未氧化的血红蛋白都是顺磁性物质。在不均匀性磁场中,物体沿磁场增强方向受力且比顺磁性强几万甚至几百万倍以上的性质称为强磁性,一般常称为铁磁性。强磁性是由于物体中磁性原子的磁矩,在一定条件下受一种强的相互作用而排列有序时产生的。根据磁有序类型的不同,又分为铁磁性(原子磁矩平行排列)、亚铁磁性(两类或更多种大小不同的磁矩反平行排列)和其它更为复杂的磁有序性:但如果磁有序的原子磁矩互相抵消,则不显强磁性,称为反铁磁性。常见的铁磁性物质有铁、钴、镍及其一些合金和化合物;常见的亚铁磁性物质有磁铁矿和多种铁氧体材料;FeO、CoO、NiO则是反铁磁物质。研究广义  相似文献   

2.
伍瑞新  陈平 《物理学报》2004,53(9):2915-2918
研究了利用磁性薄膜构造Salisbury屏的可能性及其在微波频段的反射率频率特性.结果表明,利用铁磁性材料在铁磁共振频率附近磁化率具有χ″>χ′的特性,可以构造出对电磁波有良好吸收性能的磁性Salisbury屏.通过对铁磁材料高频磁谱物理机理的分析后指出,具有弛豫型共振磁谱的铁磁材料可以构造出薄膜型Salisbury屏,其厚度为微米甚至亚微米量级.反射率的频率特性与磁性材料的特征阻抗z-r有关,它取决于铁磁共振频率和静态磁化率.反射率的频率响应显示磁性薄膜Salisbury屏具有较宽的吸收带宽. 关键词: 磁性Salisbury屏 反射率 频带响应 磁性薄膜  相似文献   

3.
采用基于密度泛函原理的全势线性缀加平面波方法(FLAPW),计算了超晶格Fen/Crn(n=1,3,5)的电子结构和磁性,结果表明铁磁耦合状态是基态,铁层的磁矩由于铬层的加入而有一些变化,铁层的磁矩随着n的增大而逐渐增强.铬层的磁矩的方向是正负相间变化的,相邻的铁层和铬层之间是反铁磁性耦合的,铁原子的d轨道和铬原子的d轨道在费米能附近有中等程度的杂化.  相似文献   

4.
利用X射线磁性圆二色技术对Co0.9Fe0.1薄膜面内元素分辨的磁各向异性进行了研究,通过剩磁模式测量不同磁化方向的样品组分原子单位空穴磁矩的变化,发现除了在生长的磁诱导方向存在易磁化轴外,在与该轴垂直的方向还存在一个类似易轴的软磁化轴;面内的两个难磁化轴与易磁化轴取向大约成66°夹角,从而构成了面内双轴磁各向异性;对不同组分元素,其单位空穴磁矩随磁化方向的变化趋势基本相同,不同磁化方向Fe原子单位空穴的磁矩值约为Co的对应值的87%,反映了Fe原子和Co原子之间存在着强烈的铁磁性耦合. 关键词: 磁各向异性 X射线磁性圆二色 铁磁耦合 CoFe合金薄膜  相似文献   

5.
谢建明  陈红霞 《计算物理》2015,32(1):93-100
采用第一性原理密度泛函理论系统研究Fe原子掺杂单壁ZnS纳米管的结构和磁性质.首先比较掺杂纳米管的稳定性.结果表明,掺杂纳米管的形成能比纯纳米管的形成能低,说明掺杂过程是一个放热反应.单掺杂纳米管的总磁矩等于掺杂的磁性原子的磁矩,主要来自Fe原子3d态的贡献.Fe原子掺杂单壁ZnS纳米管趋向于反铁磁态.为了得到稳定的铁磁态,用一个C原子替代掺杂体系中的一个S原子.计算发现铁磁态的能量比亚铁磁态低0.164 eV的.在铁磁态和反铁磁态之间存在的巨大的能量差,表明此掺杂体系可能获得室温铁磁性.  相似文献   

6.
翁臻臻  冯倩  黄志高  都有为 《物理学报》2004,53(9):3177-3185
采用能量极小原理的微磁学及Monte Carlo方法对铁磁/反铁磁混合磁性薄膜的磁特性进行了模拟计算,研究了基态下系统的磁滞回线、自旋组态及铁磁交换作用常数JAA、单轴各向异性常数K、偶极相互作用常数D和铁磁性原子掺杂量X对矫顽力Hc的影响. 同时还模拟计算了矫顽力Hc的温度特性.模拟结果表明,在混合磁性薄膜中磁滞回线存在明显的阶梯效应,利用简单的Ising模型揭示这种阶梯效应主要起源于包含不同反铁磁原 子的掺杂量的不同尺寸的原子团对外加磁场所产生不同响应;在基态下当0.5≤X≤1.0时矫顽力Hc随K,J 关键词: 蒙特卡罗 微磁学 阶梯效应 混合磁系统 矫顽力  相似文献   

7.
曾长淦 《物理》2008,37(4):220-222
对在Ge(111)表面沿着〈110〉方向外延生长的单斜FeGe纳米线进行研究,结果发现,虽然块体单斜FeGe相是反铁磁性,其纳米线却在200 K以下表现出强铁磁有序.每个Fe原子的磁矩为0.8μB.密度泛函计算揭示外延产生的晶格压缩使类派尔斯反铁磁基态失稳,从而稳定实验观察到的铁磁性.  相似文献   

8.
采用第一性原理密度泛函理论系统研究Cr原子单掺杂和双掺杂单壁ZnS纳米管的结构和磁性质.研究发现掺杂纳米管的形成能比纯纳米管的形成能低,说明掺杂过程是放热的.单掺杂纳米管的总磁矩主要来自Cr原子3d态的贡献.结果表明Cr原子掺杂单壁ZnS纳米管趋向于铁磁态.但铁磁态和反铁磁态的能量差仅为0.036 eV.为获得室温铁磁性,我们用一个C原子替代掺杂体系中的一个S原子.计算发现铁磁态的能量比反铁磁态低0.497eV.表明此掺杂体系可能获得室温铁磁性.  相似文献   

9.
采用基于密度泛函理论的第一性原理方法,对新型Heusler合金RuMn2 Sn的晶体结构、电子结构、磁性、四方变形等性质进行了系统的研究.研究结果表明:1)在奥氏体态下,磁性原子Mn对体系总磁矩的贡献最大,其中Mn(A)和Mn(B)原子磁矩的值不等并且呈反平行耦合,导致RuMn2 Sn具有稳定的亚铁磁基态,该结果与实验一致;2)由XA型立方结构至四方结构的四方变形中,发现c/a约为1.23处存在一个能量更低的稳定的马氏体相,其呈现反铁磁的特性;3)在奥氏体态和马氏体态下,Mn(A)和Mn(B)原子之间弱的d-d直接交换作用是维持它们之间亚铁磁和反铁磁耦合的主要原因.根据上述计算结果,预测RuMn2 Sn具有良好的磁性形状记忆效应.  相似文献   

10.
采用密度泛函理论(density functional theory,DFT)中的广义梯度近似(generalized gradient approximation,GGA)对MPb10(M=Ti,V,Cr,Cu,Pd)四种同分异构体的几何结构和磁性进行了计算研究.发现在四种同分异构体中,D4d结构的MPb10(M=Ti,V,Cr,Cu,Pd)具有最大的结合能和能隙,表明D4d结构为其基态几何结构, 具有较高的化学稳定性.磁性计算显示:基态TiPb10团簇的磁矩为2 μB,Ti原子与周围的Pb原子之间存在着弱的铁磁相互作用.基态VPb10团簇的总磁矩为1 μB,V原子与周围的Pb原子之间既存在着弱的铁磁相互作用又存在弱的反铁磁相互作用.基态CuPb10团簇的磁矩为1 μB,Cu原子与周围的Pb原子之间存在着弱的铁磁相互作用.基态CrPb10 和PdPb10团簇的磁矩为零,体现为非磁性.由此可见,可以通过内掺不同过渡金属对Pb10团簇的化学反应活性和磁性进行调制.  相似文献   

11.
V,Cr,Mn掺杂MoS2磁性的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
曹娟  崔磊  潘靖 《物理学报》2013,62(18):187102-187102
基于第一性原理的自旋极化密度泛函理论分别研究了过渡金属V, Cr, Mn掺杂单层MoS2的电子结构、 磁性和稳定性. 结果表明: V和Mn单掺杂均能产生一定的磁矩, 而磁矩主要集中在掺杂的过渡金属原子上, Cr单掺杂时体系不显示磁性. 进一步讨论双原子掺杂MoS2 体系中掺杂原子之间的磁耦合作用发现, Mn掺杂的体系在室温下显示出稳定的铁磁性, 而V掺杂则表现出非自旋极化基态. 形成能的计算表明Mn掺杂的MoS2体系相对V和Cr 掺杂结构更稳定. 由于Mn掺杂的MoS2 不仅在室温下可以获得比较好的铁磁性而且其稳定性很高, 有望在自旋电子器件方面发挥重要的作用. 关键词: 2')" href="#">单层MoS2 掺杂 铁磁态 第一性原理  相似文献   

12.
从第一性原理出发,在局域自旋密度近似(LSDA)和LSDA+U(在位库仑能)近似下,采用FPLAPW密度泛函能带计算方法研究了Gd2Co2Al的电子结构和磁性.从平均场近似出发,估算了体系的居里温度,并分析了导致体系居里温度偏低的原因.研究结果显示Gd2Co2Al为金属导体,其强的铁磁性的提供者主要是Gd,且Co的局域铁磁性是不稳定的.基于LSDA近似的计算表明Gd2Co2Al呈现亚铁磁性,因为Co与Gd两者磁矩反平行排列.考虑在位库仑能修正的LSDA+U方法则发现一个适当的在位库仑能(U=3.0eV)使体系从亚铁磁态转变为铁磁态,此时Co原子磁矩基本为零与实验结果更为相符.在位库仑能的变化对Co原子磁矩以及磁性原子的能级分布影响较大,但对Gd的磁性基本无影响.由于体系5d-3d态杂化和在位库仑排斥作用竞争使得Co原子磁矩呈现出波动性的特性.  相似文献   

13.
物质的宏观磁性来源于物质内部的磁结构,例如铁磁物质的磁化过程,就是磁畴的取向和尺寸变化的宏观反映.物质由顺磁到铁磁或反铁磁的转变是原子磁矩由无序转变为某种形式的有序结构的结果.因此,为了研究物质宏观磁性的来源,探求它的物理本质,人们总希望侥“看“到物质内部的结构  相似文献   

14.
电学方法调控磁性材料及器件的磁性是当前自旋电子学研究的热点之一.本综述简要介绍利用电学方法调控磁化翻转和磁畴壁运动的研究进展.首先简述了自旋极化电流的产生、自旋流与局域磁矩之间的作用原理以及对应的Landau-Lifshitz-Gilbert-Slonczewski磁动力学方程;然后分别讨论了单层磁性材料、铁磁层/重金属、铁磁层/非磁金属/铁磁层等不同结构中的电流诱导磁化翻转或驱动畴壁运动;最后介绍了利用压电效应、磁电耦合效应和栅极电场效应三种电压方式对磁矩的调控.在此基础上,对电学方法调控磁化翻转和磁畴壁运动进行了总结和展望.  相似文献   

15.
采用第一性原理密度泛函理论系统研究Cr原子单掺杂和双掺杂单壁Zn S纳米管的结构和磁性质.研究发现掺杂纳米管的形成能比纯纳米管的形成能低,说明掺杂过程是放热的.单掺杂纳米管的总磁矩主要来自Cr原子3d态的贡献.结果表明Cr原子掺杂单壁Zn S纳米管趋向于铁磁态.但铁磁态和反铁磁态的能量差仅为0.036 e V.为获得室温铁磁性,我们用一个C原子替代掺杂体系中的一个S原子.计算发现铁磁态的能量比反铁磁态低0.497e V.表明此掺杂体系可能获得室温铁磁性.  相似文献   

16.
运用第一性原理方法研究了C掺杂ZnO纳米线的电子性质和磁性质.研究发现C原子趋于替代纳米线表面的O原子.所有掺杂纳米线显示了半导体特性.纳米线的总磁矩主要来源于C原子2p轨道的贡献.由于杂化,相邻的Zn原子和O原子也产生了少量自旋.在超原胞内,C、Zn和O原子磁矩平行排列,表明它们之间是铁磁耦合.铁磁态和反铁磁态的能量差达到了186meV,表明C掺杂ZnO纳米线可能存在室温铁磁性,在自旋电子学领域有很大应用前景.  相似文献   

17.
分别测量了Sm1-xGdxAl2在低温下不同外加磁场时的电阻和磁化率.实验 结果表明,铁磁性物质Sm1-xGdxAl2在居里温度以下时,自旋磁矩和轨 道磁矩反平行有序排列,且对温度的依赖关系不同,导致在磁性抵消点出现自旋铁磁有序而 总磁矩为零的磁现象.并发现外加强磁场时自旋 轨道发生翻转. 关键词: Sm1-xGdxAl2 铁磁有序 自旋磁矩 轨道磁矩  相似文献   

18.
利用基于密度泛函理论的第一性原理计算方法, 研究了应变和C原子掺杂对单层BN纳米片的电子结构和磁学性质的影响. 计算结果表明未掺杂的单层BN纳米片具有宽的直接带隙, 在压缩和拉伸应变的作用下, 带隙会分别增大和减小, 但应变对带隙的调制整体效果不太明显. 单个C原子掺入BN纳米片的态密度揭示体系呈现出半金属性(Half-metallicity), 磁矩主要源于C 2p态, 而B 2p和N 2p态在极化作用下也能提供部分磁矩. 两个C原子掺入BN纳米片时, 磁性基态会随着C原子的间距发生变化: 当两C原子为最近邻(nn)和次近邻(nnn)时, 反铁磁态为磁性基态; 而当两C原子为次次近邻(nnnn)时, 铁磁态为基态, 并且其态密度也显示出半金属性.  相似文献   

19.
Fe3GeTe2 是一种具有稳定长程磁有序的准二维范德瓦尔斯磁性材料, 范德瓦尔斯材料的稳定性和可调性使其在自旋电子器件的应用方面具有巨大潜力. 本文用助熔剂法生长了 Mg 原子掺杂Fe2 位的 Mg0.3Fe2.7GeTe2单晶样品, 并对 Mg 掺杂Fe3GeTe2 的结构、磁性和输运性质的影响进行了研究. 磁性数据表明 Mg 掺杂后铁磁转变温度不变, 但样品的饱和磁矩减小. 输运性质的测量中观察到各向异性的反常霍尔效应, 与Fe3GeTe2 相比, Mg掺杂后的反常霍尔电阻率减小, 同时各向异性发生了变化.  相似文献   

20.
利用密度泛函理论广义梯度近似方法得到了BnTi(n=1-12)团簇的基态结构, 并讨论了电子性质和磁性质. 结果表明, n≤5 时, BnTi 基态结构呈平面或准平面, n>5 时, Ti 原子倾向于与较多的B 原子成键而呈三维结构. 由二阶能量差分得出B3Ti, B5Ti, B10Ti 为幻数团簇. Mulliken 布居分析显示BnTi 团簇中电荷由Ti 原子向近邻B 原子转移且以共价键与离子键共存; 除BTi 磁矩为5 μB 外, 其余团簇磁矩处于0-2 μB 之间; 团簇总磁矩主要由Ti 原子的3d 轨道和个别B 原子提供. B3Ti和B7Ti 团簇中, B 原子表现为反铁磁性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号