首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrolytic reactions of 2',3'-O-methyleneadenos-5'-yl 2',5'-di-O-methylurid-3'-yl 5'-O-methylurid-3'(2')-yl phosphate (1a,b) have been followed by RP-HPLC over a wide pH range to evaluate the feasibility of occurrence of phosphate-branched RNA under physiological conditions. At pH <2, where the decomposition of is first order in [H3O+], the P-O5' bond is cleaved 1.5 times as rapidly as the P-O3' bond. Under these conditions, the reaction probably proceeds by an attack of the 2'-OH on the phosphotriester monocation. Over a relatively wide range from pH 2 to 5, the hydrolysis is pH-independent, referring to rapid initial deprotonation of the attacking 2'-OH followed by general acid catalyzed departure of the leaving nucleoside. The P-O5' bond is cleaved 3 times as rapidly as the P-O3' bond. At pH 6, the reaction becomes first order in [HO-], consistent with an attack of the 2'-oxyanion on neutral phosphate. The product distribution is gradually inversed: in 10 mmol L(-1) aqueous sodium hydroxide, cleavage of the P-O3' bond is favored over P-O5' by a factor of 7.3. The results of the present study suggest that the half-life for the cleavage of under physiological conditions is only 100 s. Even at pH 2, where is most stable, the half-life for its cleavage is less than one hour and the isomerization between and is even more rapid than cleavage. The mechanisms of the partial reactions are discussed.  相似文献   

2.
Hydrolytic reactions of 2',3'-O-methyleneadenosin-5'-yl bis-5'-O-methyluridin-3'-yl phosphate (1a) have been followed by RP HPLC over a wide pH range to elucidate the role of the 2'-OH group as an intermolecular hydrogen bond donor facilitating the cleavage of 1a. At pH < 2, where the decomposition of 1 is first-order in hydronium-ion concentration, the P-O5' and P-O3' bonds are cleaved equally rapidly. Over a relatively wide range from pH 2 to 4, the hydrolysis is pH-independent and the P-O5' bond is cleaved 1.6 times as rapidly as the P-O3' bond. At pH 6, the reaction becomes first-order in hydroxide-ion concentration and cleavage of the P-O3' bond starts to predominate, accounting for 89% of the overall hydrolysis in 10 mmol L(-)(1) aqueous sodium hydroxide. Under alkaline conditions, the 2'-OH group facilitates the cleavage of 1 by a factor of 27 compared to the 2'-OMe counterpart, the influence on the P-O3' and P-O5' bond cleavage being equal. Accordingly, the 2'-hydroxy group stabilizes the phosphorane intermediate, not the departing 3'-oxyanion, by hydrogen bonding.  相似文献   

3.
To provide a solid chemical basis for the mechanistic interpretations of the thio effects observed for large ribozymes, the cleavage of triribonucleoside 3',3',5'-phosphoromonothioate triesters and diribonucleoside 3',3'-phosphorodithioate diesters has been studied. To elucidate the role of the neighboring hydroxy group of the departing 3'-linked nucleoside, hydrolysis of 2',3'-O-methyleneadenosin-5'-yl bis[5'-O-methyluridin-3'-yl] phosphoromonothioate (1 a) has been compared to the hydrolysis of 2',3'-O-methyleneadenosin-5'-yl 5'-O-methyluridin-3'-yl 2',5'-di-O-methyluridin-3'-yl phosphoromonothioate (1 b) and the hydrolysis of bis[uridin-3'-yl] phosphorodithioate (2 a) to the hydrolysis of uridin-3'-yl 2',5'-di-O-methyluridin-3'-yl phosphorodithioate (2 b). The reactions have been followed by RP HPLC over a wide pH range. The phosphoromonothioate triesters 1 a,b undergo two competing reactions: the starting material is cleaved to a mixture of 3',3'- and 3',5'-diesters, and isomerized to 2',3',5'- and 2',2',5'-triesters. With phosphorodithioate diesters 2 a,b, hydroxide-ion-catalyzed cleavage of the P--O3' bond is the only reaction detected at pH >6, but under more acidic conditions desulfurization starts to compete with the cleavage. The 3',3'-diesters do not undergo isomerization. The hydroxide-ion-catalyzed cleavage reaction with both 1 a and 2 a is 27 times as fast as that compared with their 2'-O-methylated counterparts 1 b and 2 b. The hydroxide-ion-catalyzed isomerization of the 3',3',5'-triester to 2',3',5'- and 2',2',5'-triesters with 1 a is 11 times as fast as that compared with 1 b. These accelerations have been accounted for by stabilization of the anionic phosphorane intermediate by hydrogen bonding with the 2'-hydroxy function. Thio substitution of the nonbridging oxygens has an almost negligible influence on the cleavage of 3',3'-diesters 2 a,b, but the hydrolysis of phosphoromonothioate triesters 1 a,b exhibits a sizable thio effect, k(PO)/k(PS)=19. The effects of metal ions on the rate of the cleavage of diesters and triesters have been studied and discussed in terms of the suggested hydrogen-bond stabilization of the thiophosphorane intermediates derived from 1 a and 2 a.  相似文献   

4.
The hydrolysis of diadenosine 5',5'-triphosphate to AMP and ADP has been studied over a wide pH-range. Under acidic conditions the reaction shows a first-order dependence on the hydronium ion concentration. Below pH 3 the rate-increase begins to level off. From pH 6 to 9 the hydrolysis is slow and pH-independent. Base-catalysed hydrolysis is observed in NaOH-solutions. Under alkaline conditions an intramolecular nucleophilic attack on the phosphate producing 3',5'-cAMP is also observed, but it is slower than the intermolecular reaction. Depurination of the adenosine moieties competes with the hydrolysis both under acidic and alkaline conditions, but the mechanisms are different. The temperature-dependence of the hydrolysis of Ap(3)A and the depurination of adenosine moieties were studied under acidic conditions, and the activation parameters of the reactions were calculated. The results of the work reflect the fact that the negatively charged polyphosphate group is very resistant towards nucleophilic attack. An efficient catalysis is only observed under acidic conditions, where the phosphate group becomes protonated. General acids or bases did not catalyse the hydrolysis. Furthermore, hydroxide ion catalysed cleavage is only observed at high base concentrations and other negatively charged nucleophiles did not attack the phosphate groups of diadenosine polyphosphates.  相似文献   

5.
Hydrolytic reactions of guanosyl-(3',3')-uridine and guanosyl-(3',3')-(2',5'-di-O-methyluridine) have been followed by RP HPLC over a wide pH range at 363.2 K in order to elucidate the role of the 2'-hydroxyl group as a hydrogen-bond donor upon departure of the 3'-uridine moiety. Under neutral and basic conditions, guanosyl-(3',3')-uridine undergoes hydroxide ion-catalyzed cleavage (first order in [OH(-)]) of the P-O3' bonds, giving uridine and guanosine 2',3'-cyclic monophosphates, which are subsequently hydrolyzed to a mixture of 2'- and 3'-monophosphates. This bond rupture is 23 times as fast as the corresponding cleavage of the P-O3' bond of guanosyl-(3',3')-(2',5'-di-O-methyluridine) to yield 2',5'-O-dimethyluridine and guanosine 2',3'-cyclic phosphate. Under acidic conditions, where the reactivity differences are smaller, depurination and isomerization compete with the cleavage. The effect of Zn(2+) on the cleavage of the P-O3' bonds of guanosyl-(3',3')-uridine is modest: about 6-fold acceleration was observed at [Zn(2+)] = 5 mmol L(-)(1) and pH 5.6. With guanosyl-(3',3')-(2',5'-di-O-methyluridine) the rate-acceleration effect is greater: a 37-fold acceleration was observed. The mechanisms of the partial reactions, in particular the effects of the 2'-hydroxyl group on the departure of the 3'-linked nucleoside, are discussed.  相似文献   

6.
Hydrolytic reactions of 3'-amino-3'-deoxyuridylyl-3',5'-uridine (2a), an analogue of uridylyl-3',5'-uridine having the 3'-bridging oxygen replaced with nitrogen, have been followed by RP HPLC over a wide pH range. The only reaction taking place under alkaline conditions (pH > 9) is hydroxide ion-catalyzed hydrolysis (first-order in [OH(-)]) to a mixture of 3'-amino-3'-deoxyuridine 3'-phosphoramidate (7) and uridine (4). The reaction proceeds without detectable accumulation of any intermediates. At pH 6-8, a pH-independent formation of 3'-amino-3'-deoxyuridine 2'-phosphate (3) competes with the base-catalyzed cleavage. Both 3 and in particular 7 are, however, rather rapidly dephosphorylated under these conditions to 3'-amino-3'-deoxyuridine (5). In all likelihood, both 3 and 7 are formed by an intramolecular nucleophilic attack of the 2'-hydroxy function on the phosphorus atom, giving a phosphorane-like intermediate or transition state. Under moderately acidic conditions (pH 2-6), the predominant reaction is acid-catalyzed cleavage of the P-N3' bond (first-order in [H(+)]) that yields an equimolar mixture of 5 and uridine 5'-phosphate (6). The reaction is proposed to proceed without intramolecular participation of the neighboring 2'-hydroxyl group. Under more acidic conditions (pH < 2), hydrolysis to 3 and 4 starts to compete with the cleavage of the P-N bond, and this reaction is even the fastest one at pH < 1. Formation of 2'-O,3'-N-cyclic phosphoramidate as an intermediate appears probable, although its appearance cannot be experimentally verified. The rate constants for various partial reactions have been determined. The reaction mechanisms and the effect that replacing the 3'-oxygen with nitrogen has on the behavior of the phosphorane intermediate are discussed.  相似文献   

7.
The hydrolytic reactions of the phosphorodithioate analogue of uridylyl(3',5')uridine [3',5'-Up(s)2U] were followed by HPLC over a wide pH range at 363.2 K. Under acidic and neutral conditions, three reactions compete: (i) desulfurization to a mixture of the (Rp)- and (Sp)-diastereomers of the corresponding 3',5'- and 2',5'-phosphoromonothioates [3',5'- and 2',5'-Up(s)U], which are subsequently desulfurized to a mixture of uridylyl(3',5')- and -(2',5')uridine [3',5'- and 2',5'-UpU], (ii) isomerization to 2',5'-Up(s)2U, and (iii) cleavage to uridine, in all likelihood via a 2',3'-cyclic phosphorodithioate (2',3'-cUMPS2). Under alkaline conditions (pH > 8), only a hydroxide ion catalyzed hydrolysis to uridine via 2',3'-cUMPS2 takes place. At pH 3-7, all three reactions are pH-independent, the desulfurization being approximately 1 order of magnitude faster than the cleavage and isomerization. At pH < 3, all the reactions are hydronium ion catalyzed. On going to very acidic solutions, the cleavage gradually takes over the desulfurization and isomerization. Accordingly, the cleavage overwhelmingly predominates at pH < 0. The overall hydrolytic stability of 3',5'-Up(s)2U is comparable to that of (Sp)- and (Rp)-3',5'-Up(s)U (and to that of 3',5'-UpU, except at pH < 2). The rate of the hydroxide ion catalyzed hydrolysis of 3',5'-Up(s)2U is 37% and 53% of that of (Sp)- and (Rp)-3',5'-Up(s)U, respectively. The reactions, however, differ with the respect of the product accumulation. While the phosphoromonothioates produce a mixture of 2'- and 3'-thiophosphates as stable products, 3',5'-Up(s)2U is hydrolyzed to uridine without accumulation of the corresponding dithiophosphates. At pH < 3, where the hydrolysis is hydronium ion catalyzed, the kinetic thio-effect of the second thio substitution is small: under very acidic conditions (Ho -0.69), (Sp)-3',5'-Up(s)U reacts 1.6 times as fast as 3',5'-Up(s)2U, but the reactivity difference decreases on going to less acidic solutions. In summary, the hydrolytic stability of 3',5'-Up(s)2U closely resembles that of the corresponding phosphoromonothioate. While replacing one of the nonbridging phosphate oxygens of 3',5'-UpU with sulfur stabilizes the phosphodiester bond under acidic conditions by more than 1 order of magnitude, the replacement of the remaining nonbridging oxygen has only a minor influence on the overall hydrolytic stability.  相似文献   

8.
Several alkyl 2',3'-didehydro-2',3'-dideoxythymidin-5'-yl H-phosphonates were synthesized and analyzed by electrospray ionization multistage tandem mass spectrometry (ESI-MS(n)). Two kinds of novel benzyl rearrangement reactions were observed in ESI - MS(2) of [M + H](+), [M + Na](+) and [M + K](+) of benzyl 2',3'-didehydro-2',3'-dideoxythymidin-5' yl H-phosphonate. Results from tandem mass spectrometry, high-resolution mass spectrometry and control experiments showed that the benzyl migration could undergo a four-membered cyclic rearrangement reaction, and benzyl was essential in the process.  相似文献   

9.
Hydrolytic reactions of the structural analogue of guanylyl-(3',3')-uridine, guanylyl-(3',3')-(2'-amino-2'-deoxyuridine), having one of the 2'-hydroxyl groups replaced with an amino function, have been followed by RP HPLC in the pH range 0-13 at 90 degrees C. The results are compared to those obtained earlier with guanylyl-(3',3')-uridine, guanylyl-(3',3')-(2',5'-di-O-methyluridine), and uridylyl-(3',5')-uridine. Under basic conditions (pH > 8), the hydroxide ion-catalyzed cleavage of the P-O3' bond (first-order in [OH(-)]) yields a mixture of 2'-amino-2'-deoxyuridine and guanosine 2',3'-cyclic phosphate which is hydrolyzed to guanosine 2'- and 3'-phosphates. Under these conditions, guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) is 10 times less reactive than guanylyl-(3',3')-uridine. Under acidic and neutral conditions (pH 3-8), where the pH-rate profile for the cleavage consists of two pH-independent regions (from pH 3 to pH 4 and from 6 to 8), guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) is considerably reactive. For example, in the latter pH range, guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) is more than 2 orders of magnitude more labile than guanylyl-(3',3')-(2',5'-di-O-methyluridine), while in the former pH range the reactivity difference is 1 order of magnitude. Under very acidic conditions (pH < 3), the isomerization giving guanylyl-(2',3')-(2'-amino-2'-deoxyuridine) and depurination yielding guanine (both first-order in [H(+)]) compete with the cleavage. The Zn(2+)-promoted cleavage ([Zn(2+)] = 5 mmol L(-)(1)) is 15 times faster than the uncatalyzed reaction at pH 5.6. The mechanisms of the reactions of guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) are discussed, particularly focusing on the possible stabilization of phosphorane intermediate and/or transition state via an intramolecular hydrogen bonding by the 2'-amino group.  相似文献   

10.
We have found that nonenzymatic, template-directed ligation reactions of oligoribonucleotides display high selectivity for the formation of 3'-5' rather than 2'-5' phosphodiester bonds. Formation of the 3'-5'-linked product is favored regardless of the metal ion catalyst or the leaving group, and for several different ligation junction sequences. The degree of selectivity depends on the leaving group: the ratio of 3'-5'- to 2'-5'-linked products was 10-15:1 when the 5'-phosphate was activated as the imidazolide, and 60-80:1 when the 5'-phosphate was activated by the formation of a 5'-triphosphate. Comparison of oligonucleotide ligation reactions with previously characterized single nucleotide primer extension reactions suggests that the strong preference for 3'-5'-linkages in oligonucleotide ligation is primarily due to occurence of ligation within the context of an extended Watston-Crick duplex. The ability of RNA to correctly self-assemble by template-directed ligation is an intrinsic consequence of its chemical structure and need not be imposed by an external catalyst (i.e., an enzyme polymerase); RNA therefore provides a reasonable structural basis for a self-replicating system in a prebiological world.  相似文献   

11.
N-Cyano-N-allylamino-sym-triazines, which were synthesized by the reaction of allyl bromide and the potassium salts of cyanoamino-sym-triazines, were converted to 2-(4'-methyl-1',3'-imidazolidon-1'-yl)-sym-triazines by the action of hydrogen peroxide in an alkaline medium. A similar transformation occurred in hydrochloric acid or under the influence of hydrogen chloride in alcohol. The structures of the products were confirmed by IR and mass-spectral data and alternative synthesis.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 847–850, June, 1984.  相似文献   

12.
The factors that influence the reactivity of C5' radicals in purine moieties under aerobic conditions are unknown not only in DNA, but also in simple nucleosides. 5',8-Cyclopurine lesions are the result of a rapid C5' radical attack to the purine moieties before the reaction with oxygen. These well-known lesions among the DNA modifications were suppressed by the presence of molecular oxygen in solution. Here we elucidate the chemistry of three purine-substituted C5' radicals (i.e., 2'-deoxyadenosin-5'-yl, 2'-deoxyinosin-5'-yl, and 2'-deoxyguanosin-5'-yl) under oxidative conditions using gamma-radiolysis coupled with product studies. 2'-Deoxyadenosin-5'-yl and 2'-deoxyinosin-5'-yl radicals were selectively generated by the reaction of hydrated electrons (e(aq)(-)) with 8-bromo-2'-deoxyadenosine and 8-bromo-2'-deoxyinosine followed by a rapid radical translocation from the C8 to the C5' position. Trapping these two C5' radicals with Fe(CN)6(3-) gave corresponding hydrated 5'-aldehydes in good yields that were isolated and fully characterized. When an oxygen concentration in the range of 13-266 microM (typical oxygenated tissues) is used, the hydrated 5'-aldehyde is accompanied by the 5',8-cyclopurine nucleoside. The formation of 5',8-cyclopurines is relevant in all experiments, and the yields increased with decreasing O2 concentration. The reaction of HO(*) radicals with 2'-deoxyadenosine and 2'-deoxyguanosine under normoxic conditions was also investigated. The minor path of C5' radicals formation was found to be ca. 10% by quantifying the hydrated 5'-aldehyde in both experiments. Rate constants for the reactions of the 2'-deoxyadenosin-5'-yl with cysteine and glutathione in water were determined by pulse radiolysis to be (2.1 +/- 0.5) x 10(7) and (4.9 +/- 0.6) x 10(7) M(-1) s(-1) at 22 degrees C, respectively.  相似文献   

13.
Hydrolyses of the two diastereomeric phosphoromonothioate analogs of uridine 2',3'-cyclic monophosphate [(R(P))- and (S(P))-2',3'-cUMPS] at 363.2 K have been followed by HPLC over pH-range 0-12. In aqueous alkali (pH > 9) only base-catalyzed endocyclic phosphoester hydrolysis to a nearly equimolar mixture of uridine 2'- and 3'-phosphoromonothioates (2'- and 3'-UMPS) takes place, analogously to the hydrolysis of uridine 2',3'-cyclic monophosphate (2',3'-cUMP). The (R(P))- and (S(P))-2',3'-cUMPS are hydrolyzed 50 and 30%, respectively, more slowly than 2',3'-cUMP. Under neutral and acidic conditions, desulfurization of the cyclic thiophosphates to 2',3'-cUMP competes with the phophoester hydrolysis, both reactions being acid-catalyzed at pH < 5. The desulfurization is most pronounced in strongly acidic solutions ([HCl] > 0.1 mol L(-)(1)), where more than 90% of the starting material is degraded via this route. At pH < 2, the thioates are considerably, i.e., more than 1 order of magnitude, more stable than 2',3'-cUMP. While the hydrolysis of 2',3'-cUMP is second-order in hydronium-ion concentration, that of 2',3'-cUMPS exhibits a first-order dependence. The reactivities of the two diastereomers are comparable with each other over the entire pH-range studied, the most significant difference being that the pH-independent desulfurization at pH > 5 is with the R(P)-isomer 5-fold faster than with the S(P)-isomer. In contrast to 2',3'-cUMP, depyrimidination of the starting material (i.e., release of the uracil base) competes with the hydrolysis of the thiophosphate moiety under neutral conditions (pH 6-8).  相似文献   

14.
The reaction catalyzed by the protein phosphatase-1 (PP1) has been examined by linear free energy relationships and kinetic isotope effects. With the substrate 4-nitrophenyl phosphate (4NPP), the reaction exhibits a bell-shaped pH-rate profile for kcat/KM indicative of catalysis by both acidic and basic residues, with kinetic pKa values of 6.0 and 7.2. The enzymatic hydrolysis of a series of aryl monoester substrates yields a Br?nsted beta(lg) of -0.32, considerably less negative than that of the uncatalyzed hydrolysis of monoester dianions (-1.23). Kinetic isotope effects in the leaving group with the substrate 4NPP are (18)(V/K) bridge = 1.0170 and (15)(V/K) = 1.0010, which, compared against other enzymatic KIEs with and without general acid catalysis, are consistent with a loose transition state with partial neutralization of the leaving group. PP1 also efficiently catalyzes the hydrolysis of 4-nitrophenyl methylphosphonate (4NPMP). The enzymatic hydrolysis of a series of aryl methylphosphonate substrates yields a Br?nsted beta(lg) of -0.30, smaller than the alkaline hydrolysis (-0.69) and similar to the beta(lg) measured for monoester substrates, indicative of similar transition states. The KIEs and the beta(lg) data point to a transition state for the alkaline hydrolysis of 4NPMP that is similar to that of diesters with the same leaving group. For the enzymatic reaction of 4NPMP, the KIEs are indicative of a transition state that is somewhat looser than the alkaline hydrolysis reaction and similar to the PP1-catalyzed monoester reaction. The data cumulatively point to enzymatic transition states for aryl phosphate monoester and aryl methylphosphonate hydrolysis reactions that are much more similar to one another than the nonenzymatic hydrolysis reactions of the two substrates.  相似文献   

15.
16.
The reaction of hydrated electrons (e(aq)(-)) with 8-bromo-2'-deoxyadenosine has been investigated by radiolytic methods coupled with product studies and addressed computationally by means of DFT-B3LYP calculations. Pulse radiolysis revealed that this reaction was complete in approximately 0.3 mus, and, at this time, no significant absorption was detected. The spectrum of a transient developed in 20 mus has an absorbance in the range 300-500 nm (epsilon(max) congruent with 9600 M(-1) cm(-1) at 360 nm), and it was assigned to aromatic aminyl radical 3. Computed vertical transitions (TD-UB3LYP/6-311+G) are in good agreement with the experimental observations. Radical 3 is obtained by the following reaction sequence: one-electron reductive cleavage of the C-Br bond that gives the C8 radical, a fast radical translocation from the C8 to C5' position, and an intramolecular attack of the C5' radical at the C8,N7 double bond of the adenine moiety. The rate constant for the cyclization is 1.6 x 10(5) s(-1). On the basis of the theoretical findings, the cyclization step is highly stereospecific. The rate constants for the reactions of C5' and aminyl 3 radicals with different oxidants were determined by pulse radiolysis methods. The respective rate constants for the reaction of 2'-deoxyadenosin-5'-yl radical with dioxygen, Fe(CN)(6)(3)(-), and MV(2+) in water at ambient temperature are 1.9 x 10(9), 4.2 x 10(9), and 2.2 x 10(8) M(-1) s(-1). The value for the reaction of aminyl radical 3 with Fe(CN)(6)(3-) is 8.3 x 10(8) M(-1) s(-1), whereas the reaction with dioxygen is reversible. Tailored experiments allowed the reaction mechanism to be defined in some detail. A synthetically useful radical cascade process has also been developed that allows in a one-pot procedure the conversion of 8-bromo-2'-deoxyadenosine to 5',8-cyclo-2'-deoxyadenosine in a diastereoisomeric ratio (5'R):(5'S) = 6:1 and in high yield, by reaction with hydrated electrons in the presence of K(4)Fe(CN)(6).  相似文献   

17.
Cross-coupling cyclization reaction between 2,3-allenoic acids 1 and 2,3-allenols 2, in which two allenes functioned differently, was realized to afford 4-(1',3'-dien-2'-yl)-2(5H)-furanone derivatives 3. The reaction may proceed via an oxypalladation, insertion, and beta-hydroxide elimination process. A high E-stereoselectivity of the new formed C=C double bond was observed.  相似文献   

18.
张自义  董恒山  祝英 《化学学报》1996,54(11):1054-1059
经1-[5'-氨基-1'-(4"-氯苯基)-1',2',3'-三唑-4'-甲酰基]-4-(3'-溴苯基)-3-氨基硫脲在浓硫酸作用下制得2-(3'-溴苯胺基)-5-[5'-氨基-1'-(4"-氯苯基)-1',2',3'-三唑-4'-基]-1,3,4-噻二唑化合物。该化合物的晶体结构经X射线衍射分析确定, 化合物属三斜晶系, P1空间群, a=1.1784(2), b=1.4455(2),c=1.1353(1)nm; α=100.68(1), β=109.50(1), γ=79.89(1)°; V=1.7779nm^3; 分子式C~1~6H~1~1BrClN~7S, Mr=448.75; Dc=1.673g/cm^3, Z=4,μ=58.16cm^-^1, 最终偏离因子R=0.084, Rw=0.086。分析化合物的键长, 键角数据表明, 该分子具有离域π键结构。  相似文献   

19.
Transition-metal-catalyzed dimeric coupling-cyclization reactions of two different 2,3-allenols afforded 4-(1',3'-dien-2'-yl)-2,5-dihydrofuran derivatives 3. 2-Substituted 2,3-allenols 1 cyclized to form the 2,5-dihydrofuran ring, whereas the 2-unsubstituted 2,3-allenols 2 provided the 1,3-diene unit at the 4-position. The reaction is proposed to proceed through an oxypalladation, insertion, and beta-hydroxide elimination process. The C=C double bond was formed with high E stereoselectivity by beta-hydroxide elimination.  相似文献   

20.
We have recently shown that hairpins containing 2',5'-linked RNA loops exhibit superior thermodynamic stability compared to native hairpins comprised of 3',5'-RNA loops [Hannoush, R. N.; Damha, M. J. J. Am. Chem. Soc. 2001, 123, 12368-12374]. A remarkable feature of the 2',5'-r(UUCG) tetraloop is that, unlike the corresponding 3',5'-linked tetraloop, its stability is virtually independent of the hairpin stem composition. Here, we determine the solution structure of unusually stable hairpins of the sequence 5'-G(1)G(2)A(3)C(4)-(U(5)U(6)C(7)G(8))-G(9)(U/T(10))C(11)C(12)-3' containing a 2',5'-linked RNA (UUCG) loop and either an RNA or a DNA stem. The 2',5'-linked RNA loop adopts a new fold that is completely different from that previously observed for the native 3',5'-linked RNA loop. The 2',5'-RNA loop is stabilized by (a). U5.G8 wobble base pairing, with both nucleotide residues in the anti-conformation, (b). extensive base stacking, and (c). sugar-base and sugar-sugar contacts, all of which contribute to the extra stability of this hairpin structure. The U5:G8 base pair stacks on top of the C4:G9 loop-closing base pair and thus appears as a continuation of the stem. The loop uracil U6 base stacks above U5 base, while the cytosine C7 base protrudes out into the solvent and does not participate in any of the stabilizing interactions. The different sugar pucker and intrinsic bonding interactions within the 2',5'-linked ribonucleotides help explain the unusual stability and conformational properties displayed by 2',5'-RNA tetraloops. These findings are relevant for the design of more effective RNA-based aptamers, ribozymes, and antisense agents and identify the 2',5'-RNA loop as a novel structural motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号