首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel polymeric delivery systems for the photosensitizer mesochlorin e6 (Mce6) were synthesized to overcome problems of systemic toxicity. A disulfide bond was included to allow for quick release of Mce6 from the N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone once internalized in tumor tissue. The synthesized conjugates demonstrated a time-dependent reductive cleavage with an accompanying increase in the quantum yield of singlet oxygen generation on exposure to DTT. Quicker release kinetics and a higher cytotoxicity in SKOV-3 human ovarian carcinoma cells were obtained as compared to polymer conjugate with a proteolytically cleavable GFLG spacer. These novel conjugates hold promise as clinically relevant drug delivery systems for photodynamic therapy of cancer.  相似文献   

2.
We design an organic photosensitizer with a donor-π-acceptor configuration. The photosensitizer exhibits aggregation-induced emission characteristics and efficient singlet oxygen production in the aggregated state. It is then enveloped into the water-soluble micelle to afford a nanoprobe. The water-soluble nanoprobe keeps the photosensitizer in the aggregation state and is used for imaging-guided photodynamic ablation of cancer cells.  相似文献   

3.
Abstract— We report experimental results that support a theory of self-sensitized singlet oxygen-mediated bleaching of the porphyrin photosensitizer Photofrin. Microelectrode measurements of photodynamic oxygen consumption were made near the surface of individual, Photofrin-sensitized EMT6 spheroids during laser irradiation. The progressive decrease in photochemical oxygen consumption with sustained irradiation is consistent with a theory in which bleaching occurs via self-sensitized singlet oxygen reaction with the photosensitizer ground state. A bleaching model based solely on absorbed optical energy density is inconsistent with the data. Photobleaching has a significant effect on calculated photodynamic dose distributions in 500 pin diameter spheriods. Dose distributions corrected for the effects of bleaching produce a new estimate (12.1 ± 1.2 m M ) for the threshold dose of reacting singlet oxygen in this system.  相似文献   

4.
《化学:亚洲杂志》2017,12(14):1700-1703
Here we show that “off‐on” type of photodynamic therapy agents could be developed using hollow mesoporous silica nanoparticles (HMSNPs), which can be used not only for enhancing delivery of photosensitizers to cancer cells but also for enabling switchable optical properties of the photosensitizers. Fluorescence and singlet oxygen generation of the photosensitizer‐loaded HMSNP are turned off in its native state. In vitro cell studies showed that this HMSNP‐based “off‐on” agent may have potential utility in selective fluorescence detection and photodynamic therapy of cancers.  相似文献   

5.
Silicon phthalocyanines and silicon naphthalocyanines, which are two derivatives in the family of hematoporphyrin, have been synthesized to assess their potential as photosensitizers for photodynamic therapy. For these complexes the red shift of their Q-band maximum absorption tends to depend on the nature of the axial substituent. The bimolecular rate coefficients for the interacting between photosensitizer, either SiNC or SiPC, and generated singlet molecular oxygen were determined from the time-resolved emission spectrum of singlet oxygen at 1.27 μm. On the basis of these data the electron-transfer quenching mechanism is discussed in relation to the Marcus model.  相似文献   

6.
The photosensitized generation of reactive oxygen species, and particularly of singlet oxygen [O2(a1Δg)], is the essence of photodynamic action exploited in photodynamic therapy. The ability to switch singlet oxygen generation on/off would be highly valuable, especially when it is linked to a cancer‐related cellular parameter. Building on recent findings related to intersystem crossing efficiency, we designed a dimeric BODIPY dye with reduced symmetry, which is ineffective as a photosensitizer unless it is activated by a reaction with intracellular glutathione (GSH). The reaction alters the properties of both the ground and excited states, consequently enabling the efficient generation of singlet oxygen. Remarkably, the designed photosensitizer can discriminate between different concentrations of GSH in normal and cancer cells and thus remains inefficient as a photosensitizer inside a normal cell while being transformed into a lethal singlet oxygen source in cancer cells. This is the first demonstration of such a difference in the intracellular activity of a photosensitizer.  相似文献   

7.
Supramolecular photonic therapeutic agents   总被引:1,自引:0,他引:1  
A new approach to achieving selectivity for photodynamic therapy based upon the reversible off/on switching of the key therapeutic property (singlet oxygen generation) of a supramolecular photonic therapeutic agent (SPTA) in response to an external stimulus in the surrounding microenvironment is described. A series of SPTA analogues with pH responsive receptors of varying pKa are presented, in which the generation of singlet oxygen is shown to be dependent upon a proton source. For example, systems have been constructed such that the excited state energy of the photosensitizer can be decayed by a rapid photoinduced electron transfer (PET) mechanism, resulting in virtually no singlet oxygen being generated, but when the amine receptor is protonated the PET mechanism does not operate and singlet oxygen is produced. In vitro efficacy demonstrated that the SPTA derivatives can be activated within cells and one analogue is measured to have an EC50 value of 5.8 nM when assayed in the MRC5 cell line.  相似文献   

8.
Abstract— Photophysical and photodynamic properties of a ehlorin type molecule derived from hydroxyethylvinyldeuteroporphyrin are presented. It photosensitizes singlet oxygen production as efficiently as mesotetraphenylporphin. The high absorptions of both its ground and triplet states in the red (660 nm) make it a potent photosensitizer which might act not only by photo-oxidation via singlet oxygen but also by radicals produced via sequential biphotonic absorption.  相似文献   

9.
Photosensitizers are reagents that produce reactive oxygen species upon light illumination and are commonly used to study oxidative stress or for photodynamic therapy. There are many available photosensitizers, but most have limitations, such as low photostability, structural instability, or a limited usable range of solvent conditions. Here, we describe a novel photosensitizer scaffold (2I-BDP) based on the unique characteristics of the BODIPY chromophore (i.e., high extinction coefficient, high photostability, and insensitivity to solvent environment). 2I-BDP shows stronger near-infrared singlet oxygen luminescence emission and higher photostability than the well-known photosensitizer, Rose Bengal. Unlike other photosensitizers, this scaffold is widely applicable under various conditions, including lipophilic and aqueous environments. HeLa cells loaded with 2I-BDP could be photosensitized by light illumination, demonstrating that 2I-BDP is potentially useful as a reagent for cell photosensitization, oxidative stress studies, or PDT.  相似文献   

10.
Hypericin is a promising photosensitizer for photodynamic therapy (PDT) characterized by a high yield of singlet oxygen. Photobleaching of hypericin has been studied by means of absorption and fluorescence spectroscopy in different biological systems: in human serum albumin solution, in cultured human adenocarcinoma WiDr cells and in the skin of nude mice. Prolonged exposure to light (up to 95 min, 100 mW/cm2) of wavelength around 596 nm induced fluence-dependent photobleaching of hypericin in all studied systems. The photobleaching was not oxygen dependent, and singlet oxygen probably played no significant role. Emission bands in the spectral regions 420-560 nm and above 600 nm characterize the photoproducts formed. An emission band at 615-635 nm was observed after irradiation of cells incubated with hypericin or of mouse skin in vivo but not in albumin solution. The excitation spectrum of these products resembled that of hypericin. Hypericin appears to be more photostable than most sensitizers used in PDT, including mTHPC and Photofrin.  相似文献   

11.
Skin photosensitivity remains one of the main limitations in photodynamic therapy. In this Concept article a strategy to overcome this limitation is described, in which the photosensitizer is hidden inside the hydrophobic cavity of a water‐soluble organometallic cage. The metallacage not only protects the photosensitizer from light, it also facilitates its delivery to cancer cells.  相似文献   

12.
《中国化学快报》2022,33(4):1923-1926
Light-responsive carriers have been used for the controlled release of antitumor drugs in recent years. However, most light-responsive vectors require high-energy ultraviolet or visible light to achieve local drug release, and ultraviolet light would cause cellular damage. Near-infrared light has a deeper tissue-penetration depths and minimal harm to tissues, but it is difficult to cleave the chemical bond directly. The aim of this study is to develop a novel near-infrared light-responsive carrier for local release of antitumor drugs. Unsaturated phospholipids can be oxidized by singlet oxygen to achieve liposomal drug release, and singlet oxygen can be produced by photosensitizer under light irradiation. A new near-infrared light-responsive nanoliposome was designed that imparts light-triggered local drug release. Nanoliposomes, which were composed of matrix phospholipids and unsaturated phospholipids, were prepared by ammonium sulfate gradient method, and loaded with antitumor drug doxorubicin (DOX) and photosensitizer 1,4,8,11,15,18,22,25-octabutoxypalladium phthalocyanine. Under near-infrared light, photosensitizers could produce singlet oxygen and damage tumor cells by photodynamic therapy. Simultaneously, the unsaturated phospholipids were oxidized by singlet oxygen and result in DOX release, causing sustained cell damage by chemotherapy. Near-infrared light-responsive nanoliposomes exhibit enhanced anticancer activity owing to combined treatment of photodynamic therapy and chemotherapy. A new platform is thus offered for designing effective intracellular drug-release systems, holding great promise for future cancer therapy.  相似文献   

13.
The synthesis and physicochemical properties of novel porphyrazines possessing an alternate system of two peripheral substituents, 2,5-dimethylpyrrol-1-yl and dimethylamino, are presented. All the macrocycles were subjected to HPLC purity studies. Spectroscopic studies of magnesium(II) porphyrazine encompassed steady state absorption, emission measurements, including fluorescence decays, transient absorption spectra, and thermoluminescence. Additionally, magnesium(II) porphyrazine was found to be a moderate photosensitizer with singlet oxygen generation values of 0.12 and 0.14 in DMF and DMSO, respectively. Comparison of the quantum yields of singlet oxygen generation before and after deoxygenation showed that the photodynamic effect of magnesium(II) porphyrazine is governed by the photosensitization mechanism II. Magnesium(II) and manganese(III) porphyrazines were characterized using X-ray crystallography.  相似文献   

14.
Photodynamic therapy (PDT) is a promising cancer ablation method, but its efficiency is easily affected by several factors, such as the insufficient delivery of photosensitizers, low oxygen levels as well as long distance between singlet oxygen and intended organelles. A multifunctional nanohybrid, named MGAB, consisting of gelatin-coated manganese dioxide and albumin-coated gold nanoclusters, was designed to overcome these issues by improving chlorin e6 (Ce6) delivery and stimulating oxygen production in lysosomes. MGAB were quickly degraded in a high hydrogen peroxide, high protease activity, and low pH microenvironment, which is closely associated with tumor growth. The Ce6-loaded MGAB were picked up by tumor cells through endocytosis, degraded within the lysosomes, and released oxygen and photosensitizers. Upon near-infrared light irradiation, the close proximity of oxygen with photosensitizer within lysosomes enabled the production of cytotoxic singlet oxygen, resulting in more effective PDT.  相似文献   

15.
The photosensitized generation of singlet oxygen within tumor tissues during photodynamic therapy (PDT) is self‐limiting, as the already low oxygen concentrations within tumors is further diminished during the process. In certain applications, to minimize photoinduced hypoxia the light is introduced intermittently (fractional PDT) to allow time for the replenishment of cellular oxygen. This condition extends the time required for effective therapy. Herein, we demonstrated that a photosensitizer with an additional 2‐pyridone module for trapping singlet oxygen would be useful in fractional PDT. Thus, in the light cycle, the endoperoxide of 2‐pyridone is generated along with singlet oxygen. In the dark cycle, the endoperoxide undergoes thermal cycloreversion to produce singlet oxygen, regenerating the 2‐pyridone module. As a result, the photodynamic process can continue in the dark as well as in the light cycles. Cell‐culture studies validated this working principle in vitro.  相似文献   

16.
Abstract— Little is directly known about the influence of the local environment experienced by a photosensitizer in a biological system on its photophysics and photochemistry. In this paper, we have addressed this issue by correlating mechanistic studies using laser flash photolysis with cellular phototoxicity data, obtained under the same experimental conditions. In particular, we have focused on the interaction between local concentrations of photosensitizer (deuteroporphyrin) and oxygen in determining the mechanism of phototoxicity in L1210 cells. In cells, as well as in models such as liposomes and red blood cell ghosts, hypochromicity and a reduction in fluorescence and intersystem crossing yields are observed on increasing the photosensitizer concentration between 0.5 and 20 μM, which illustrates the onset of a self-association. In aerated cellular preparations, the phototoxicity is predominantly type II (singlet oxygen) for all concentrations studied but an oxygen-independent mechanism occurs at the higher concentrations in deaerated samples. These observations are readily explained by consideration of triplet state kinetics as a function of oxygen and photosensitizer concentrations in cells. The rate constant for quenching of the photosensitizer triplet state by oxygen in cells was measured as 6.6 × 108 M?1 s?1 and by photosensitizer ground state as -106M?1s?1 (in terms of local concentration). The latter reaction gave rise to a long-lived species that is presumably responsible for the oxygen-independent phototoxicity observed at the higher photosensitizer concentrations used. This self-quenching of the triplet state is postulated to arise from electron transfer resulting in radical ion formation. Under conditions where no self-quenching contributes, the phototoxicity measured as a function of oxygen concentration correlates well with a model based on the determined kinetic parameters, thus, unambiguously proving the intermediacy of singlet oxygen. These effects should be borne in mind when interpreting phototoxicity mechanisms from in vitro cell studies. The excellent correlation achieved between laser flash photolysis data and measured phototoxicity gives credence to the direct use of photophysical techniques to elucidate photochemical mechanisms in biological media.  相似文献   

17.
Abstract The formation of singlet oxygen by photodynamic agents is shown to be notably amplified by the combination of UV-B radiations plus tryptophan in aqueous medium because of the formation of N-formylkynurenine. a tryptophan photoproduct which is also a good photosensitizer. The biological implication of these effects is discussed.  相似文献   

18.
We have designed a novel photodynamic therapy (PDT) agent using protein binding aptamer, photosensitizer, and single-walled carbon nanotube (SWNT). The PDT is based on covalently linking a photosensitizer with an aptamer then wrapping onto the surface of SWNTs, such that the photosensitizer can only be activated by light upon target binding. We have chosen the human alpha-thrombin aptamer and covalently linked it with Chlorin e6 (Ce6), which is a second generation photosensitizer. Our results showed that SWNTs are great quenchers to singlet oxygen generation (SOG). In the presence of its target, the binding of target thrombin will disturb the DNA interaction with the SWNTs and cause the DNA aptamer to fall off the SWNT surface, resulting in the restoration of SOG. This study validated the potential of our design as a novel PDT agent with regulation by target molecules, enhanced specificity, and efficacy of therapeutic function, which directs the development of photodynamic therapy to be safer and more selective.  相似文献   

19.
Resistance to antimicrobial drugs is an impending healthcare problem of growing significance. In the post-antibiotic era, there is a huge push to develop new tools for effectively treating bacterial infections. Photodynamic therapy involves the use of a photosensitizer that is activated by the use of light of an appropriate wavelength in the presence of oxygen. This results in the generation of singlet oxygen molecules that can kill the target cells, including cancerous cells and microbial cells. Photodynamic therapy is shown to be effective against parasites, viruses, algae, and bacteria. To achieve high antimicrobial activity, a sufficient concentration of photosensitizer should enter the microbial cells. Generally, photosensitizers tend to aggregate in aqueous environments resulting in the weakening of photochemical activity and lowering their uptake into cells. Nanocarrier systems are shown to be efficient in targeting photosensitizers into microbial cells and improve their therapeutic efficiency by enhancing the internalization of photosensitizers into microbial cells. This review aims to highlight the basic principles of photodynamic therapy with a special emphasis on the use of nanosystems in delivering photosensitizers for improving antimicrobial photodynamic therapy.  相似文献   

20.
A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号