首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
刘育  徐法强 《分子催化》1994,8(2):138-142
直接利用甲烷氧化偶联产物中的稀乙烯制环氧乙烷刘育,徐法强,沈师孔(中国科学院兰州化学物理研究所,兰州,730000)关键词乙烯环氧化,甲烷氧化偶联,负载银催化剂1.前言甲烷氧化偶联(OCM)是一个产物较为复杂的反应,从目前研究结果来看,产物中C2烃总...  相似文献   

3.
Na-Mn-W/SiO2 catalysts were studied for the oxidative coupling of methane (OCM) in a micro fixed bed reactor made of stainless steel reactor at elevated pressures. The effect of operating conditions, such as GHSV, pressure, temperature and CH4/O2 ratio on the catalytic performance of OCM was investigated. The C2+ selectivity of 80.3% was obtained at a CH4 conversion of 16.1% at 750℃,1.5× 105h-1 GHSV, and 0.6 MPa. Also, there is a small output of C3 and C4 hydrocarbons in the tail gas. The results show that unfavorable effects due to elevated pressure can be overcome by increasing GHSV, and the OCM reaction is strongly dependent on the operating conditions at elevated pressures,particularly GHSV and the CH4/O2 ratio.  相似文献   

4.
邹世辉  李志年  周秋月  潘洋  袁文涛  贺磊  王申亮  文武  刘娟娟  王勇  杜永华  杨玖重  肖丽萍  小林久芳  范杰 《催化学报》2021,42(7):1117-1125,中插16-中插20
天然气作为一种低碳清洁能源,其储量大,价格低,被认为是最有前途的石油替代资源之一.而以天然气的主要成分——甲烷为原料来生产高价值化学品被认为是石化工业中实现天然气取代石油为原料新化工路线的技术基础,具有极为可观的社会经济价值.目前甲烷的化学利用主要采用间接转化法,即先从甲烷制合成气,再由合成气制备各种化工原料和油品.但...  相似文献   

5.
A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800℃), methane to oxygen ratio (4 10), and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH:j techniques. The rise in oxygen concentration is not beneficial for the C5 selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytie system is highly potential for directly converting methane to liquid fuels.  相似文献   

6.
The selective oxidation of methane to basic petrochemicals (ethylene and ethane) is desirable and has attracted extensive research attention. The oxidative coupling of methane (OCM) is considered a promising one-step route for the production of C2 compounds (ethylene and ethane) from methane, and has been the focus of industrial and fundamental studies. It is widely accepted that the composition is a crucial factor governing the activity of a catalyst system. It was found that the phase structures, basicity, existing status and distribution of the active components, oxygen species, and chemical states of the catalyst were influenced by the composition and ratio, resulting in different catalytic performances for the OCM. In this study, a series of solid acid WO3/TiO2-supported lithium-manganese oxide catalysts for OCM were synthesized via the impregnation method. The impacts of diverse compositions, such as the individual contents (Li and Mn) and dual contents (Li-Mn), on the OCM were investigated in detail, using inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, CO2-temperature-programmed desorption, O2-temperature-programmed desorption, H2-temperature-programmed reduction, Raman spectroscopy, X-ray photoelectron spectroscopy, and CH4-temperature-programmed surface reaction. The addition of Li content to the catalyst not only led to the anatase-to-rutile crystal structure transformation of TiO2, and the reduction of the high-valence-state Mn species to low-valence-state Mn, but also increased the content of surface lattice oxygen and decreased the surface basicity. The observed effects on the structures and catalytic performance suggest that the Li content is helpful in suppressing the formation of completely oxidized CO2, and increases the C2 selectivity. Moreover, increasing the Li content of the catalyst facilitated the mobility of the lattice oxygen, which triggered the promotion of CH4 activation, thereby enhancing the OCM catalytic performance. The Mn content acted as the active sites for OCM; therefore, the performance of the catalyst was closely related to the Mn concentration and valence state. However, the WO3/TiO2-supported catalyst with excessive Mn content exhibited a high surface basicity, high valence state of Mn, and low abundant lattice oxygen, which was unfavorable for C2 selectivity. The Raman spectroscopy results revealed that MnTiO3 was formed due to the co-existence of Li and Mn on WO3/TiO2, and played an essential role in improving the low-temperature OCM performance. There was a synergic effect of the Li and Mn components on the OCM. The optimal performance (16.3% C2 yield) was achieved over the WO3/TiO2-supported lithium-manganese catalyst with n(Li) : n(Mn) = 2 : 1 at 750 ℃.  相似文献   

7.
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.  相似文献   

8.
The oxidative coupling of methane (OCM) over titanate perovskite catalyst has been developed by three-dimensional numerical simulations of flow field coupled with heat transfer as well as heterogeneous kinetic model. The reaction was assumed to take place both in the gas phase and on the catalytic surface. Kinetic rate constants were experimentally obtained using a ten step kinetic model. The simulation results agree quite well with the data of OCM experiments, which were used to investigate the effect of temperature on the selectivity and conversion obtained in the methane oxidative coupling process. The conversion of methane linearly increased with temperature and the selectivity of C2 was practically constant in the temperature range of 973–1073 K. The study shows that CFD tools make it possible to implement the heterogeneous kinetic model even for high exothermic reaction such as OCM.  相似文献   

9.
10.
A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5wt%Na2WO4-2wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3 /FeCrAl metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing O2.The reaction performance of oxidative coupling of methane(OCM) in the dual-bed reactor system is evaluated.The effects of the reaction parameters such as feed CH 4 /O 2 ratio,reaction temperature and side tube feed O2 flowrate on the catalytic performance are investigated.The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM.CH4 conversion of 33.2%,C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained,which have been increased by 6.4%,4.1% and 5.5%,respectively,as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%,31.9% and 17.7%,respectively,as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3 /FeCrAl metal-based monolithic catalyst in a single-bed reactor.The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.  相似文献   

11.
The kinetics of the oxidative condensation of methane (OCM) over a mixed-oxide lithium-manganese-tungsten-silicate catalyst has been simulated, and systems of stoichiometric chemical equations possible under the OCM conditions have thereby been discriminated. A phenomenological kinetic model has been developed to fit the observed rates of formation and disappearance of the compounds involved in OCM.  相似文献   

12.
Modification and performance of Li induced silica phase transition of (Mn W)/SiO2 catalyst, under reaction conditions of oxidative coupling of methane (OCM), have been investigated employing textural characterizations and redox studies. Stability and precrystalline form of fresh Li induced silica phase transition catalyst depend on the Li loading. A catalyst, with high lithium loading, destabilizes on OCM stream. This destabilization is not due to Li evaporation at OCM reaction conditions.α-cristobalite is proposed to be an intermediate in the crystallization of amorphous silica into quartz in the Li-induced silica phase transition process. However, the type of crystalline structure was found to be unimportant with regard to the formation of a selective catalyst. Metal-metal interactions of Li-Mn, Li-W and Mn-W, which are affected during silica phase crystallization, are found to be critical parameters of the trimetallic catalyst and were studied by TPR. Role of lithium in Li doped (Mn W)/SiO2 catalyst is described as a moderator of the Mn-W interaction by involving W in silica phase transition. These interactions help in the improvement of transition metal redox properties, especially that of Mn, in favor of OCM selectivity.  相似文献   

13.
制备了不同 Na、W、Mn组分的 Na- W- Mn/ Si O2 催化剂 ,并进行了甲烷氧化偶联反应催化性能的评价和XPS、XRD、L RS表征 .研究结果表明 ,Na不但有强的表面富集能力 ,而且可以使 Mn向表面发生迁移 .首次发现 Na2 W2 O7也是活化甲烷的活性相 .活化甲烷的活性中心是 Na- O- Mn和 Na- O- W结构单元 ,且 Na- O-Mn主要存在于催化剂的表面 ,Na- O- W则分布在距催化剂表面较深的部位  相似文献   

14.
Reaction chemistry of the OCM reaction on W-Mn/SiO2 catalyst has been reviewed in this account.Initial activity and selectivity,stability in a long-term reaction,reaction at elevated pressures and a modelling test in a stainless-steel fluidized-bed reactor show that W-Mn/SiO2 has promising performance for the development of an OCM process that directly produces ethylene from natural gas.A study on surface catalytic reaction kinetics and used cataly st structure characterization revealed a possible reason why C2 and COx selectivity changed during the long-term reaction.Further improvement of the catalyst composition and preparation metbod should be a future direction of study on OCM reaction over W-Mn/SiO2 catalyst.  相似文献   

15.
低温甲烷氧化偶联Li- ZnO/La2O3催化剂   总被引:4,自引:0,他引:4  
采用浸渍法制备了Li- ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性能. 反应条件下, 在考察的w(Li)=2%和w(ZnO)=20%的Li- ZnO/La2O3在680 ℃得到了甲烷转化率为27.3%, C2选择性为65.2%, C2收率为17.8%的结果;在700 ℃, C2收率达到21.8%. Raman和XPS表征结果表明, 催化剂低温催化性能与表面的活性吸附氧物种含量相关;La2O2CO3物种可能是提高催化剂的C2选择性的关键.  相似文献   

16.
Pulse reaction of methane in the presence and absence of free (or gaseous) oxygen and that of ethane and ethylene in the absence of free oxygen over Li−MgO, La−MgO and Sm−MgO (Li or La or Sm/Mg ratio=0.1) have been investigated for elucidating the role of lattice and free oxygen in oxidative coupling of methane (OCM) over these catalysts. No significant role is played by the lattice oxygen from these catalysts in the OCM process. The presence of free oxygen is essential for all these catalysts to be active and selective in OCM process. However, lattice oxygen plays some role in ethane conversion but a very significant role in ethylene conversion over these catalysts.  相似文献   

17.
Introduction0ncofthcintriguingpr0blcmsinhctcrogcncouscatal}'sisisthcactit'ationanddircctconversionofmcthancintoliquidfucIanduscful.h..i..l,lllMcthancactivationisvcry'difficultbccauscn1cthancisathcrmod}'namicalI}'stablccompoundt`ithanoblcgas-likcconfigurati0nThcvcry'strongtctrahcdralC-Hbonds(435kJ/mol)offcrnofiJnctionalgroups,magncticm0mcnts'orpolardistortionstofacilitatcchcmicalattackThismakcsmcthanelcssrcactivcthanncarl}'allitsconvcrsionproducts.Rccentl}'oxidativccouplinghasbecnconsidcrcda…  相似文献   

18.
The samples of MnMW/SiO2 (M = Na, K, and Rb) were synthesized using various synthesis methods under varied heat treatment conditions and their physicochemical properties and activity in the reaction of the oxidative condensation of methane (OCM) were studied for the development of an effective catalyst for the resource-saving process of natural gas conversion into ethylene. It was found that the preparation method exerts an effect on the textural characteristics of the samples and the reducing properties of the cations of manganese and tungsten. It was determined that the composition of a W-containing phase depends on the alkali metal, and a ratio between the polymorphous modifications of SiO2 is controlled by the method of synthesis and the conditions of catalyst heat treatment. It was established that the yield of C2 hydrocarbons in the OCM reaction increased with the use of incipient wetness impregnation instead of the method of mixing with a suspension for catalyst preparation and with an increase in the catalyst heat treatment temperature from 700 to 1000°C. The optimum composition of the catalyst and the condition of its synthesis were found: 2Mn0.8Na3W/SiO2 obtained by the impregnation method and calcined at 1000°C ensured the yield of target products of ~20% with a CH4 conversion of ~35% at a reaction temperature of 850°C.  相似文献   

19.
The effects of surface acidity-basicity and surface oxidation reduction property of Li-La-Mn/TiO2 (I) and Li-La-Mn-W/TiO2 (II) catalysts on oxidative coupling of methane were studied by CO2-temperature programmed desorption (CO2-TPD) and temperature programmed reduction temperature programmed oxidation (TPR-TPO). The results show that there exist strong basic sites on catalysts I and II, but the quantity of these sites on catalyst II is more than that on catalyst I. Besides, the strength of basics site on catalyst II is stronger than that on catalyst I. The surface of catalyst II is easier to reduce and re-oxidize than that of catalyst I. The surface of catalyst II is easier to reduce and re-oxidize than of catalyst I, and the extent of reduction and reoxidation of catalyst II is more intensive than catalyst I, which results in a lowing of the reaction temperature and enhances the activity and C2 hydrocarbon yield as well as gas hourly space velocity(GHSV). Catalyst II is excellent for the oxidative coupling of methane (OCM).  相似文献   

20.
担载型过渡金属催化剂上甲烷直接转化为低碳烃的研究   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号