首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the monomeric insulin analogue des(B26—B30) insulin is presented.; A detailed comparison with the 2Zn insulin structures shows that while there are some large changes in the structure, the basic secondary structural units maintain their integrity. The DPI structure is broadly similar to molecule Ⅰ in the 2Zn structure, and in this respect is like other crystal forms of insulin. In addition to changes on the surface of the structure there are some subtle but extensive changes in the heart of the molecule. The molecules are closely packed in the crystal with many and varied contacts, including a complex network of protein-cadmium interactions and a considerable number of water mediated contacts. The molecular surface has an unusually large number of hydrophobic groups which tend to cluster in a thick band running around the protein. The crystal structure is well ordered, indeed the clarity of some side chains and the definition of the water molecules is superior to that found in the mor  相似文献   

2.
Noble metal nanocrystals (NCs) have widespread applications in catalysis.Their catalytic performances are strongly related to the surface structures while the atomic utilization efficiency of noble metal is considerably correlated with the surface area.Thus, advantages of both specific surface structure and large surface area are highly required to show off simultaneously so as to optimize the catalytic performance and decrease the usage of noble metal.However, it seems that the two advantages are incom¬patible with each other in one NC since it is difficult for small NCs to keep their specific facets, while NCs with specific surface structure usually crystallize into the large size leading to small surface area.The construction of noble metal NCs with specific sur¬face area and large surface area is a great challenge.This review introduces the strategies to prepare noble metal NCs integrated with both specific surface facets and high surface area from the controllable synthesis of morphologies.The current researches in this field are summarized by introducing specific cases.Subsequently, typical applications in catalysis are presented to demonstrate the advantages of noble metal NCs with both specific facets and high surface area.Finally, the perspectives concerning about the development tendency in this field are put forward. © 2018 Journal of Electrochemistry. All rights reserved.  相似文献   

3.
Molecular dynamics simulations are applied to the initial stage of polyalanine13 conformational transi- tion from α-helix to random coil in aqueous environment and the interaction of polyalanine13 with zwitterionic and hydrophobic surfaces respectively in the same condition. The analysis of secondary structure, hydrogen bonds, RMSD, dihedral distribution, and the degree of adsorption are performed. The results show that zwitterionic structure maintains the natural behavior of polyalanine13 in water to a better extent, which should be an indirect proof of the hypothesis of "maintain of normal structure."  相似文献   

4.
The microscopic behaviors of a water layer on different hydrophilic and hydrophobic surfaces of well ordered self-assembled monolayers (SAMs) are studied by molecular dynamics simulations. The SAMs consist of 18-carbon alkyl chains bound to a silicon(111) substrate, and the characteristic of its surface is tuned from hydrophobic to hydrophilic by using different terminal functional groups ( CH 3 , COOH). In the simulation, the properties of water membranes adjacent to the surfaces of SAMs were reported by comparing pure water in mobility, structure, and orientational ordering of water molecules. The results suggest that the mobility of water molecules adjacent to hydrophilic surface becomes weaker and the molecules have a better ordering. The distribution of hydrogen bonds indicates that the number of water-water hydrogen bonds per water molecule tends to be lower. However, the mobility of water molecules and distribution of hydrogen bonds of a water membrane in hydropho- bic system are nearly the same as those in pure water system. In addition, hydrogen bonds are mainly formed between the hydroxyl of the COOH group and water molecules in a hydrophilic system, which is helpful in understanding the structure of interfacial water.  相似文献   

5.
DFT calculations have been performed to explore the aminotriazine adsorption on graphene surfaces.Relative energies,equilibrium geometries and electronic structures of monomer and dimer of aminotriazine molecules adsorbed at the surface were investigated and analyzed in details.It was found that the hydrogen atoms in the NH2 group of aminotriazine molecules are directed toward the graphene surface,and the adsorption energy increases as the NH2 group is added.The adsorbed aminotriazine molecules facilely form a dimer through the hydrogen bonding interactions,and the two aromatic rings of optimized structure of 2-amino-1,3,5-triazine(B) dimmer(denoted by B2) and melamine(D) dimmer(denoted by D2) are parallel to the graphene sheet.The large deviation of the averaged adsorption energy of B2 and D2 compared to monor adsorption may reflect the increase of π-π repulsion and the effect of hydrogen bond formation.The electronic structure analyses reveal that the formation of hydrogen bonds in melamine dimer has great influence on the adsorption mode at the graphene surface.  相似文献   

6.
To study the adsorption behavior of Cu+ in aqueous solution on semiconductor surface, the interactions of Cu+ and hydrated Cu+ cations with the clean Si(111) surface were investigated via hybrid density functional theory(B3LYP) and Mller-Plesset second-order perturbation(MP2) method. The clean Si(111) surface was described with cluster models(Si14H17, Si16H20 and Si22H21) and a four-silicon layer slab under periodic boundary conditions. Calculation results indicate that the bonding nature of adsorption of Cu+ on Si surface can be viewed as partial cova- lent as well as ionic bonding. The binding energies between hydrated Cu+ cations and Si(111) surface are large, suggesting a strong interaction between them. The coordination number of Cu+(H2O)n on Si(111) surface was found to be 4. As the number of water molecules is larger than 5, water molecules form a hydrogen bond network. In aqueous solution, Cu+ cations will safely attach to the clean Si(111) surface.  相似文献   

7.
Undesired adsorption of proteins brings big troubles to marine structures.The settled proteins change the physical and chemical properties of the surfaces,which allow marine fouling organisms to settle down on the structures.Therefore,to understand the adsorption mechanism of proteins is very helpful to find an environment-friendly solution against biofouling.Many approaches have been developed to study protein adsorption,but most of them are insufficient to give the chemical interaction information between proteins and surfaces.Fourier transform infrared spectroscopy with attenuated total reflection(FTIR-ATR)is an efficient,fast and non-destructive method for in situ surface measurement,which greatly minimizes the interference of water to infra red spectra,because of the very small depth of penetration of the evanescent wave.In this paper,an in situ FTIR-ATR technology was used to investigate the adsorption process of trypsin on a bare ZnSe surface and on a TiO2 coated ZnSe surface,and the effect of calcium cation strength and ultraviolet light irradiation on the secondary structure of trypsin were also evaluated.FTIR spectra of trypsin showed that Amide I band red shift and AmideⅡband blue shift in aqueous environment on both surfaces compared with the dry trypsin powder,and the addition of calcium cations further changed the Amide bands position,which indicated that the change of the secondary structure could be interfered by the environment.The hydrogen bond formation between water and trypsin,the interaction between surface and trypsin,the interaction between hydrated calcium cations and trypsin,are major facto rs to change the secondary structure of trypsin,and UV light irradiation also showed its influence for the secondary structure.  相似文献   

8.
The 5-parameter Morse potential(5-MP) of the interactions between Cl atoms and Ni surfaces was constructed. The adsorption and diffusion of Cl atoms on Ni low index-surfaces were investigated with 5-MP in detail. All the critical characteristics of the system, such as adsorption site, adsorption geometry, binding energy, eigenvalues for vibration, etc. were obtained. The calculated results show that chlorine atoms are likely to be adsorbed on the high symmetry- sites. Cl atoms locate on the four-fold hollow sites of the intact Ni(100) surface, while they tend to occupy threefold sites on the Ni( 111 ) surface. The four-fold hollow sites are the most stable adsorption sites on the Ni (110) surface for Cl, although the three-fold sites and the long-bridge sites are stable adsorption sites on the Ni(110) surface for the atoms of the first and second periods. For the Cl-Ni surface adsorption system, the surface binding energy of a Cl atom is relevant to the coarse degree of the cluster surface, and the binding energies have an order of Ni ( 111 ) 〈 Ni(100) 〈Ni(100).  相似文献   

9.
Atmospheric water harvesting based on vapor adsorption is a newly emerged and potential technology to supply portable water for arid areas.To efficiently harvest vapor from the air,sorbents are required to have conside-rable adsorption capacity,easy regeneration and high stability.With the advantages of porous structure,tunable pore size and tailorable hydrophilicity,metal-organic frameworks(MOFs)have demonstrated excellent performance in vapor adsorption and water generation.In this review,we first discuss the degradation mechanisms of MOFs exposed to water and summarize the structure-stability relationship;by centering on the adsorption isotherms,the connection between the structure of MOFs and the water adsorption property is illuminated;finally,some prospects are suggested in order to push forward the progress of this technology.  相似文献   

10.
Dielectric monitoring of the adsorption or release process of salicylic acid (SA) by chitosan membrane shows that the dielectric spectra of the chitosan membrane/ SA solution systems change regularly in the adsorption or release process. By analyzing the regularity, a new mechanism for the relaxations is proposed. The concentration polarization layer (CPL) caused by SA adsorption or release is confirmed to be essential for the dielectric relaxations. The changes of the spectra with time are explained by account of the relationship between CPL properties and dielectric strength. Based on this relaxation mechanism, a theoretical method can be established to calculate dynamical parameters of inner structure of the adsorption or release systems from their dielectric spectra. Therefore, dielectric spec- troscopy is demonstrated to be a promising method for estimating interfacial distribution of ionic sub- stances and their binding to membrane in a non-invasive way.  相似文献   

11.
Hofmeister series ranks the ability of salt ions in influencing a variety of properties and processes in aqueous solutions.In this review,we reexamine how these ions and some other small molecules affect water structure and thermodynamic properties,such as surface tension and protein backbone solvation.We illustrate the difficulties in interpreting the thermodynamic information based on structural and dynamic arguments.As an alternative,we show that the solvation properties of ions and proteins/small molecules can be used to explain the salt effects on the thermodynamic properties of the solutions.Our analysis shows that the often neglected cation-anion cooperativity plays a very important role in these effects.We also argue that the change of hydrogen donor/acceptor equilibrium by added cosolutes/cosolvents can be used to explain their effects on protein secondary structure denaturation/protection:those increase hydrogen donor concentrations such as urea and salts with strongly solvated cations/weakly hydrated anions tend to dissolve protein backbone acting as secondary structure denaturants,whereas those lack of hydrogen donors but rich in acceptors have the opposite effect.  相似文献   

12.
吴任平  阮玉忠  于岩 《结构化学》2005,24(9):1096-1100
1 INTRODUCTION The reactivity of activated alumina adsorbent is closely related to its specific surface area: the larger the specific surface area, the better its activity and adsorbent capability are. However, in reality, the prac- tically available specific surface area or effective spe- cific area has relationship with its pore structure[1]. Since many reactant molecules are difficult to enter the pores to react with whose radius is shorter than certain critical value, the increase of p…  相似文献   

13.
The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has been studied by means of density functional theory and cluster model. Geometry, adsorption energy and vibrational frequencies have been determined, and the present calculations show that the adsorption of CN through C-end on metal surface is more favorable than that via N-end for the same surface. The vibrational frequencies of CN for C-down configuration on surface are blue-shifted with respect to the free CN, which is contrary to the change of vibrational frequencies when CN is adsorbed by N-down structure. Furthermore, the charge transfer from surface to CN causes the increase of surface work function.  相似文献   

14.
The surface photovoltaic characteristic of copper tetrasulfonato- phthalocyanine (CuTsPc) in water vapor was studied by surface photovoltage spectroscopy (SPS). It was found that the adsorption of water vapor caused some marvelous changes of the photovoltaic response, that is, the SPS signal diminished rapidly and even reversed; the bands were widened and displayed a bathochromic shift. The dependence of surface photovoltage on the vapor pressure indicates that the reversed signal reaches to a maximum when the vapor pressure is 4.7×102 Pa. The time response velocity, reversibility, selectivity and reproducibili-ty were examined as well. All results obtained show that CuTsPc is of great significance in the manufacture of moisture sensitive devices. In addition, the mechanism of moisture sensitivity is discussed.  相似文献   

15.
In this work,the nature of physisorbed water and its impacts on the structure,surface chemistry,and proton conduction properties of TiO2 nanocrystals were investigated by a combinational spectral technique.All TiO2 nanocrystals were directly prepared by a hydrothermal method,which showed highly hydrated and sulfated surfaces.The surface water molecules were indicated to exist in a wide set of energetically nonequivalent surface hydration groups,leading to the removal of physisorbed and chemisorbed water in sequence with increasing temperature.After heating treatment at 100 ℃ in air,physisorbed water layers were recovered with no significant impacts on the TiO2 nanostructure.On the other hand,when treated at the same temperature in vacuum,the recovery of physisorbed water layers was partially reversible,while a new hydration state appeared due to the filling of the high-energy adsorption sites by water molecules,which led to a significant increase in the amount of water molecules for surface hydration and an accelerated dehydration process toward lower temperature.As a result,an abnormal increase was observed in proton conductivity.These observations were explained in terms of thermally induced changes of surface chemistry and the amount of hydrated water.The results reported in this work are important,which may help understand the roles that the physisorbed water plays in stabilizing the nanostructures and therefore could have a broad class of implications.  相似文献   

16.
The adsorption behavior of benzoic acid onto a water-compatible hypercrosslinked polymeric adsorbent NJ-8 wascompared with that onto macroporous Amberlite XAN-4. This paper focuses on the static equilibrium adsorption behaviors,the adsorption thermodynamics and the column dynamic adsorption profiles. Five isotherm models are used to fit the results.This shows that the Freundlich equation can give a perfect fit. The specific surface area of NJ-8 is about as high as that ofAmberlite XAD-4, but the adsorbing capacity for benzoic acid on NJ-8 is about 14.9%-64.8% higher than that on AmberliteXAD-4, which is attributed to its microporous mechanism and partial polarity. The negative values of the adsorptionenthalpy are indicative of an exothermic process. Both enthalpy and free energy changes of adsorption manifest a physicalsorption process. The negative values of the adsorption entropy indicate that adsorption is well consistent with the restrictedmobilities and the configurations of the adsorbed molecules on the surface of the studied adsorbents with superficialheterogeneity. Both adsorbents were used in mini-column experiments to demonstrate the higher breakthrough adsorbing capacity of the hypercrosslinked polymeric adsorbent NJ-8 to benzoic acid, as compared with that of Amberlite XAD-4.  相似文献   

17.
The adsorption of asymmetrical triblock copolymers from a non-selective solvent on solid surface has been studied by using Scheutjens-Fleer mean-field theory and Monte Carlo simulation method on lattice model. The main aim of this paper is to provide detailed computer simulation data, taking A8-kB20Ak as a key example, to study the influence of the structure of copolymer on adsorption behavior and make a comparison between MC and SF results. The simulated results show that the size distribution of various configurations and density-profile are dependent on molecular structure and adsorption energy. The molecular structure will lead to diversity of adsorption behavior. This discrepancy between different structures would be enlarged for the surface coverage and adsorption amount with increasing of the adsorption energy. The surface coverage and the adsorption amount as well as the bound fraction will become larger as symmetry of the molecular structure becomes gradually worse. The adsorption layer becomes thicker with increasing of symmetry of the molecule when adsorption energy is smaller but it becomes thinner when adsorption energy is higher. It is shown that SF theory can reproduce the adsorption behavior of asymmetrical triblock copolymers. However, systematic discrepancy between the theory and simulation still exists.The approximations inherited in the mean-filed theory such as random mixing and the allowance of direct back folding may be responsible for those deviations.  相似文献   

18.
Magnesium ions, which exist in formation water and injection water under downhole conditions in the oil and gas production industry, are a key determinant in the CaCO3 scale formation. Many studies have focused their attention on the effect of magnesium on the kinetics, the morphology and the content of Mg in the Ca-CO3 scale. Little attention has been paid to the effect of Mg^2 on the initial stages of CaCO3 formation on a metal surface. In this study, an electrochemical technique was used to study the influence of Mg^2 on the ini-tial stages of CaCO3 scale formed on a metal surface. With this electrochemical technique, the reduction of the dissolved oxygen in an analysis solution is considered on the surface of a rotating disk electrode (RDE) un-der potentiostatic control. The rate of oxygen reduction on the surface of the RDE enables the extent of sur-face coverage of scale to be assessed. With this electrochemical technique, a new insight into the effect of Mg^2 on CaCO3 scale formed on a metal surface is given.  相似文献   

19.
The adsorption and diffusion of N atoms on the three low-index Cu planes were studied using 5-parameter Morse potential (5-MP) method, and the best theory-experiment agreement was obtained. N atoms of Cu(100) surface sit on the fourfold hollow site with the vertical height of 0.018 nm closely coplanar with the topmost copper layer, and the four Cu-N bond lengths are 0.182 nm and the fifth Cu-N distance is 0.199 nm. For Cu(111) system, the existence of aberrant Cu(100) reconstructed structure is approved at higher coverage, and at low coverage the structure is almost an ideal Cu(111) surface structure. With respect to Cu(110) system, the N atoms are adsorbed at LB and H3 sites, not at SB site. The diffusion passage and diffusion barrier of adsorbed N atoms were also studied.  相似文献   

20.
The O-Ag(210)surface adsorption system was studied via the five-parameter Morse potential theory.Meanwhile,the 2O-Ag(210)system was investigated via the extended London-Eyring-Polanyi-Sato(LEPS)potential theory to learn the interaction between the adsorption states.Calculated results demonstrate that there are two stable on-surface adsorption sites(B and H)for O atoms on Ag(210)stepped surface.And the perpendicular vibrations are 30.3 and 42.9 meV,which are close to that observed in high resolution electron energy loss spectroscopy(HREELS).Also,there exists an octahedral subsurface adsorption state with a high vibrational frequency,and the interaction between the on-surface and subsurface O species is slight.The mode at 54.6 meV,which is close to that observed in HREELS(54-56 meV),is because of the vibration of the O atom on B site under the influence of that on H site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号