首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel film of chitosan-gold nanoparticles is fabricated by a direct and facile electrochemical deposition method and its application in glucose biosensor is investigated. HAuCl(4) solution is mixed with chitosan and electrochemically reduced to gold nanoparticles, which can be stabilized by chitosan and electrodeposited onto glassy carbon electrode surfaces along with the electrodeposition of chitosan. Then a model enzyme, glucose oxidase (GOD) is immobilized onto the resulting film to construct a glucose biosensor through self-assembly. The resulting modified electrode surfaces are characterized with both AFM and cyclic voltammetry. Effects of chitosan and HAuCl(4) concentration in the mixture together with the deposition time and the applied voltage on the amperometric response of the biosensor are also investigated. The linear range of the glucose biosensor is from 5.0 x 10(-5) approximately 1.30 x 10(-3) M with a Michaelis-Menten constant of 3.5 mM and a detection limit of about 13 microM.  相似文献   

2.
The one-step synthesis is reported of a nanofilm composed of iron oxide and gold nanoparticles in a chitosan matrix that can act as a novel matrix for the immobilization of glucose oxidase (GOx) to fabricate a glucose biosensor. The use for the composite film strongly increased the effective electrode surface for loading of GOx. The size and shape of the iron oxide nanoparticles were examined by transmission electron micrograph. Direct electron transfer and electrocatalysis by GOx was investigated via cyclic voltammetry and chronoamperometry. Under optimized conditions, the biosensor has a response time of 6?s and a linear response in the range between 3???M and 0.57?mM of glucose, with a detection limit of 1.2???M at a signal-to-noise ratio of 3. This novel and disposable mediatorless glucose biosensor may form the basis for a future mass-produced glucose biosensor.
Figure
In this paper, based on the direct electrochemistry of redox enzyme, we try to integrate the excellent properties of iron oxide-gold nanoparticle-chitosan composite film with the advantages of one-step electrodeposition to fabricate a sensitive and stable glucose biosensor.  相似文献   

3.
A novel amperometric glucose biosensor was fabricated by in situ incorporating glucose oxidase (GOD) within the sol‐gel silica film on a Prussian blue (PB) modified electrode. The method is simple and controllable, which combined the merits of in situ immobilizing biomolecules in sol‐gel silica film by electrochemical method and the synergic catalysis effects of PB and GOD molecules. Scanning electron microscopy (SEM) showed that the GOD/sol‐gel silica film was homogeneous with a large number of three‐dimensional nanopores, which not only enhanced mass transport, but also maintained the active configuration of the enzyme molecule and prevented the leakage of enzyme, therefore improved the stability and sensitivity of the biosensor. The fabricated biosensor showed fast response time (10 s), high sensitivity (26.6 mA cm?2 M?1), long‐term stability, good suppression of interference, and linear range of 0.01 mM–5.8 mM with a low detection limit of 0.94 μM for the detection of glucose. In addition, the biosensor was successfully applied to determine glucose in human serum samples.  相似文献   

4.
A new H2O2 enzymeless sensor has been fabricated by incorporation of thionin onto multiwall carbon nanotubes (MWCNTs) modified glassy carbon electrode. First 50 μL of acetone solution containing dispersed MWCNTs was pipetted onto the surface of GC electrode, then, after solvent evaporations, the MWCNTs modified GC electrode was immersed into an aqueous solution of thionin (electroless deposition) for a short period of time <5–50 s. The adsorbed thin film of thionin was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase enzyme. Also the modified electrode shows excellent catalytic activity for oxygen reduction at reduced overpotential. The rotating modified electrode shows excellent analytical performance for amperometric determination of hydrogen peroxide, at reduced overpotentials. Typical calibration at ?0.3 V vs. reference electrode, Ag/AgCl/3 M KCl, shows a detection limit of 0.38 μM, a sensitivity of 11.5 nA/μM and a liner range from 20 μM to 3.0 mM of hydrogen peroxide. The glucose biosensor was fabricated by covering a thin film of sol–gel composite containing glucose oxides on the surface of thionin/MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 1 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. In addition biosensor can reach 90% of steady currents in about 3.0 s and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) is eliminated. The usefulness of biosensor for direct glucose quantification in human blood serum matrix is also discussed. This sensor can be used as an amperometric detector for monitoring oxidase based biosensors.  相似文献   

5.
X Yang  J Bai  Y Wang  X Jiang  X He 《The Analyst》2012,137(18):4362-4367
Silver nanowires synthesized through a polyol process using polyvinylpyrrolidone as protection (PVP-AgNWs) were used as a new electrode material for constructing a sensor. Hydrogen peroxide (H(2)O(2)) and glucose were used as analytes to demonstrate the sensor performance of the PVP-AgNWs. It is found that the PVP-AgNWs-modified glassy carbon electrode (PVP-AgNWs/GCE) exhibits remarkable catalytic performance toward H(2)O(2) reduction. This sensor has a fast amperometric response time of less than 2 s and the catalytic current is linear over the concentration of H(2)O(2) ranging from 20 μM to 3.62 mM (R = 0.998) with a detection limit of 2.3 μM estimated on a signal-to-noise ratio of 3. A glucose biosensor was constructed by immobilizing glucose oxidase (GOD) onto the surface of the PVP-AgNWs/GCE. The resultant glucose biosensor can be used for glucose detection in human blood serum with a sensitivity of 15.86 μA mM(-1) cm(-2) and good selectivity and stability.  相似文献   

6.
In this research a novel osmium complex was used as electrocatalyst for electroreduction of oxygen and H2O2 in physiological pH solutions. Electroless deposition at a short period of time (60 s), was used for strong and irreversible adsorption of 1,4,8,12‐tetraazacyclotetradecane osmium(III) chloride (Os(III)LCl2) ClO4 onto single‐walled carbon nanotubes (SWCNTs) modified GC electrode. The modified electrode shows a pair of well defined and reversible redox couple, Os(IV)/Os(III) at wide pH range (1–8). The glucose biosensor was fabricated by covering a thin film of glucose oxidase onto CNTs/Os‐complex modified electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The fabricated biosensor shows high sensitivity, 826.3 nA μM?1cm?2, low detection limit, 56 nM, fast response time <3 s and wide calibration range 1.0 μM–1.0 mM. The biosensor has been successfully applied to determination of glucose in human plasma. Because of relative low applied potential, the interference from electroactive existing species was minimized, which improved the selectivity of the biosensor. The apparent Michaelis‐Menten constant of GOx on the nanocomposite, 0.91 mM, exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this glucose biosensor.  相似文献   

7.
《Electroanalysis》2006,18(18):1842-1846
Nanosized Prussian blue (PB) particles were synthesized with a chemical reduction method and then the PB nanoparticles were assembled on the surface of multiwall carbon nanotubes modified glassy carbon electrode (PB/MWNTs/GCE). The results showed that the PB/MWNTs nanocomposite exhibits a remarkably improved catalytic activity towards the reduction of hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the PB/MWNTs platform by an electrochemically polymerized o‐phenylenediamine (OPD) film to construct an amperometric glucose biosensor. The biosensor exhibited a wide linear response up to 8 mM with a low detection limit of 12.7 μM (S/N=3). The Michaelis–Menten constant Km and the maximum current imax of the biosensor were 18.0 mM and 4.68 μA, respectively. The selectivity and stability of the biosensor were also investigated.  相似文献   

8.
Enzyme-functionalized gold nanowires for the fabrication of biosensors   总被引:3,自引:0,他引:3  
Gold nanowires were prepared by an electrodeposition strategy using nanopore polycarbonate (PC) membrane, with the average diameter of the nanowires about 250 nm and length about 10 microm. The nanowires prepared were dispersed into chitosan (CHIT) solution and stably immobilized onto glassy carbon electrode (GCE) surface. The electrochemical behavior of gold nanowire modified electrode and its application to the electrocatalytic reduction of hydrogen peroxide (H(2)O(2)) were investigated. The modified electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. Moreover, the good biocompatibility of nanometer-sized gold, the vast surface area of the nanowire-structure make it ideal for adsorption of enzymes for the fabrication of biosensors. Glucose oxidase was adsorbed onto the nanowire surface to fabricate glucose biosensor as an application example. The detection of glucose was performed in phosphate buffer (pH 6.98) at -0.2 V. The resulting glucose biosensor exhibited sensitive response, with a short response time (<8 s), a linear range of 10(-5)-2 x 10(-2) M and detection limit of 5 x 10(-6) M.  相似文献   

9.
《Electroanalysis》2017,29(10):2300-2306
High‐performance biosensors were fabricated by efficiently transferring enzyme onto Pt electrode surfaces using a polydimethylsiloxane (PDMS) stamp. Polypyrrole and Nafion were coated first on the electrode surface to act as permselective films for exclusion of both anionic and cationic electrooxidizable interfering compounds. A chitosan film then was electrochemically deposited to serve as an adhesive layer for enzyme immobilization. Glucose oxidase (GOx) was selected as a model enzyme for construction of a glucose biosensor, and a mixture of GOx and bovine serum albumin was stamped onto the chitosan‐coated surface and subsequently crosslinked using glutaraldehyde vapor. For the optimized fabrication process, the biosensor exhibited excellent performance characteristics including a linear range up to 2 mM with sensitivity of 29.4±1.3 μA mM−1 cm−2 and detection limit of 4.3±1.7 μM (S/N=3) as well as a rapid response time of ∼2 s. In comparison to those previously described, this glucose biosensor exhibits an excellent combination of high sensitivity, low detection limit, rapid response time, and good selectivity. Thus, these results support the use of PDMS stamping as an effective enzyme deposition method for electroenzymatic biosensor fabrication, which may prove especially useful for the deposition of enzyme at selected sites on microelectrode array microprobes of the kind used for neuroscience research in vivo .  相似文献   

10.
A simple one‐step electrodeposition method is described to fabricate three dimensional ordered macroporous chitosan?prussian blue?single walled carbon nanotubes (3DOM CS?PB?SWCNTs) film onto the gold electrode surface to fabricate a copper ions (Cu2+)‐specific DNAzyme biosensor. The new sensing strategy for sensitive and selective detection of Cu2+ was based on Au nanorods (AuNRs) as signal amplification labels. The electrochemical signal of glucose increased with the concentration of Cu2+ increasing. The morphologies and electrochemistry of the composites were investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical techniques including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and so on. Linear correlations of copper ion concentration were obtained in the range from 10?18 M to 10?5 M, achieving with a limit of detection of 10?19 M (S/N=3). Parameters affecting the biosensor response such as temperature, the cleavage time and the time of hybridization were optimized. This biosensor showed a wide range, low detection limit, good reproducibility and high stability. Additionally, these striking properties endow the biosensor with a great promise for analytical applications.  相似文献   

11.
付萍  袁若  柴雅琴  殷冰  曹淑瑞  陈时洪  李宛洋 《化学学报》2008,66(15):1796-1802
在金电极表面修饰一层L-半胱氨酸,再利用静电吸附作用固定纳米普鲁士蓝(nano-PB),然后利用壳聚糖-纳米金复合膜将葡萄糖氧化酶(GOD)固定于修饰电极表面,制成新型的葡萄糖传感器.通过交流阻抗技术,循环伏安法和计时电流法考察了电极的电化学特性.在优化的实验条件下,该传感器在葡萄糖浓度为3.0×10-6~1.0×10-3 mol/L范围内有线性响应,检测下限为1.6×10-6 mol/L.此外该传感器具有响应快、稳定性好和选择性良好的特点,能有效排除常见干扰物质如抗坏血酸、尿酸等对测定的影响.  相似文献   

12.
Qin X  Lu W  Luo Y  Chang G  Asiri AM  Al-Youbi AO  Sun X 《The Analyst》2012,137(4):939-943
The present paper reports on the first preparation of 2,4,6-tris(2-pyridyl)-1,3,5-triazine nanobelts (TPTNBs) by adjusting the pH value of the solution and the subsequent synthesis of Ag nanoparticle (AgNP)-decorated TPTNBs (AgNP-TPTNBs) by mixing an aqueous AgNO(3) solution with preformed TPTNBs without use of any external reducing agent. It is found that the resultant AgNP-TPTNBs exhibit notable catalytic performance for H(2)O(2) reduction. A glucose biosensor was fabricated by immobilizing glucose oxidase (GOD) onto a AgNP-TPTNBs-modified glassy carbon electrode (GCE) for glucose detection. The constructed glucose sensor has a wide linear response range from 3 mM to 20 mM (r: 0.999) with a detection limit of 190 μM. It is further shown that this glucose biosensor can be used for glucose detection in human blood serum.  相似文献   

13.
We have electrodeposited a composite film consisting of graphene oxide, chitosan and glucose oxidase directly on a glassy carbon electrode (GCE) through electrochemical reduction of a solution of the 3 components under controlled direct electrical potential. The procedure takes only several minutes, and the thickness of the resulting film is uniform and controllable. The GOx has uncompromised bioactivity and exhibits reversible 2-proton and 2-electron transfer in presence of glucose. It therefore can be used amperometric sensing of glucose. The biosensor has a fast response (<3 s), a detection limit of 0.4 μM (which is 50-fold lower compared to the biosensor prepared by drop-casting solutions of the same materials onto an GCE), and a linear response in the 0.4 μM to 2 mM concentration range (which again is much better than that of the biosensor prepared by the drop-casting method). Other features include high reproducibility, long-time storage stability, and satisfactory selectivity. We presume that the direct single-step electrodeposition of this nanocomposite offers a promising approach towards novel types of highly sensitive and stable electrochemical biosensors.
Figure
We describe a fast and easy way for the fabrication of graphene-chitosan-GOx film by one-step electrodeposition under controlled potential. The direct electron transfer reaction of GOx immobilized on graphene-chitosan hybrids is observed, and therefore can be used for amperometric sensing of glucose. The biosensor shows a fast response (<3 s), a detection limit of 0.4 μM, and a linear response in the 0.4 μM to 2 mM concentration range.  相似文献   

14.
A feasible method to fabricate glucose biosensor was developed by covalent attachment of glucose oxidase (GOx) to a gold nanoparticle monolayer modified Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of ferrocyanide followed and confirmed the assemble process of biosensor, and indicated that the gold nanoparticles in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. CV performed in the presence of excess glucose and artificial redox mediator, ferrocenemethanol, allowed to quantify the surface concentration of electrically wired enzyme (Gamma(E)(0)) on the basis of kinetic models reported in literature. The Gamma(E)(0) on proposed electrode was high to 4.1 x 10(-12) mol.cm(-2), which was more than four times of that on electrode direct immobilization of enzyme by cystamine without intermediate layer of gold nanoparticles and 2.4 times of a saturated monolayer of GOx on electrode surface. The analytical performance of this biosensor was investigated by amperometry. The sensor provided a linear response to glucose over the concentration range of 2.0 x 10(-5)-5.7 x 10(-3) M with a sensitivity of 8.8 microA.mM(-1).cm(-2) and a detection limit of 8.2 microM. The apparent Michaelis-Menten constant (K(m)(app)) for the sensor was found to be 4.3 mM. In addition, the sensor has good reproducibility, and can remain stable over 30 days.  相似文献   

15.
We propose an electron transfer-mediated amperometric enzyme biosensor based on plasma-polymerized thin film of dimethylaminomethylferrocene (DMAMF) on a sputtered gold electrode. The DMAMF plasma-polymerized film is deposited directly onto the surface of the electrode under dry conditions. The resulting thin film not only has redox sites but also is extremely thin (approximately 20 nm), adheres well onto the substrate (electrode), has a flat surface and a highly-crosslinked network structure, and is hydrophilic in nature. Glucose oxidase is densely immobilized onto the surface of DMAMF plasma-polymerized film on the gold electrode. From the electrochemical measurement, the biosensor can cover the wide range of glucose concentration (1.3 - 81 mM) at +350 mV of applied potential. The current response of the glucose biosensor was decreased by less than 5% in an aerobic solution as compared to that in an anaerobic solution. These show that the DMAMF plasma-polymerized films play a role as the electron transfer mediators between the reaction center of enzyme and the electrode.  相似文献   

16.
Well-defined hexangularly faced CdS nanorod arrays have been grown directly on a conductive ITO glass via a facile one-step and non-template hydrothermal approach. Gold nanoparticles were decorated onto the nanorods to enhance the electron transfer process of electrode. Glucose oxidase (GOD) was then immobilized on the CdS through crosslinking with chitosan (CS), which resulted in a glucose biosensor with high enzyme loading and excellent sensitivity. Such a chitosan-encapsulated GOD-based biosensor revealed a relatively rapid response time of less than 50s, and an approximate linear detection range of glucose concentration, from 50 to 500 μmol L(-1) with a detection limit of 38 μmol L(-1) and an electrode sensitivity of 5.9 μA mM(-1).  相似文献   

17.
《Electroanalysis》2006,18(8):748-756
Amperometric biosensors based on the corresponding oxidase enzyme with poly(neutral red) redox mediator have been developed for the determination of glucose and pyruvate. The enzymes have been immobilized on top of poly(neutral red) modified carbon film electrodes with glutaraldehyde as the cross‐linking agent. The biosensors were characterized by cyclic voltammetry and by electrochemical impedance spectroscopy. The glucose biosensor exhibited a linear response in the range 90 μM to 1.8 mM with a detection limit of 22 μM and the pyruvate biosensor in the range 90 to 600 μM with a detection limit of 34 μM. The relative standard deviations were found to be 2.1% (n=3) and 2.8% (n=4) respectively. The interference effects of various compounds were also studied. The glucose content of several types of wine and the amount of pyruvate in onion and garlic were determined and the results were compared with those obtained by standard spectrophotometric methods.  相似文献   

18.
A novel method for preparation of hydrogen peroxide biosensor was presented based on immobilization of hemoglobin (Hb) on carbon‐coated iron nanoparticles (CIN). CIN was firstly dispersed in a chitosan solution and cast onto a glassy carbon electrode to form a CIN/chitosan composite film modified electrode. Hb was then immobilized onto the composite film with the cross‐linking of glutaraldehyde. The immobilized Hb displayed a pair of stable and quasireversible redox peaks and excellent electrocatalytic reduction of hydrogen peroxide (H2O2), which leading to an unmediated biosensor for H2O2. The electrocatalytic response exhibited a linear dependence on H2O2 concentration in a wide range from 3.1 μM to 4.0 mM with a detection limit of 1.2 μM (S/N=3). The designed biosensor exhibited acceptable stability, long‐term life and good reproducibility.  相似文献   

19.
A novel method to fabricate a third‐generation hydrogen peroxide biosensor was reported. The electrode was first derivatized by electrochemical reduction of in situ generated 4‐carboxyphenyl diazonium salt (4‐CPDS) in acidic aqueous solution yielded stable 4‐carboxyphenyl (4‐CP) layer. The horseradish peroxidase (HRP) enzyme was then covalently immobilized by amidation between NH2 terminus of enzyme and COOH terminus of 4‐CP film making use of the carbodiimide chemistry. Electrodeposition conditions used to control electrode functionalization density and film electron transfer kinetics were assessed by chronoamperometry and electrochemical impedance spectroscopy. The immobilized HRP displayed excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediators. The effect of various operational parameters was explored for optimum analytical performance. The reported biosensor exhibited fast amperometric response (within 5 s) to H2O2. The detection limit of the biosensor was 5 μM, and linear range was from 20 μM to 20 mM. Furthermore, the biosensor exhibited high sensitivity, good reproducibility, and long‐term stability.  相似文献   

20.
Huang Q  An Y  Tang L  Jiang X  Chen H  Bi W  Wang Z  Zhang W 《Analytica chimica acta》2011,707(1-2):135-141
In this paper, a novel dual enzymatic-biosensor is described for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages (PMs) of diabetic mice to evaluate the risk of diabetes-accelerated atherosclerosis. The biosensor was constructed by a three-step method. First, a poly-thionine (PTH) film was assembled on the surface of glassy carbon electrode by cyclic voltammetric electropolymerization of thionine, which serves as an electron transfer mediator (ETM). Second, gold nanoparticles (GNPs) were covered on the surface of PTH facilitating the electron transfer between glucose oxidase (GOx), cholesterol oxidase (ChOx) and electrode. Finally, the enzymes, GOx, cholesterol esterase (ChE), and ChOx, were covalently attached to the PTH layer through a chitosan (CH) linker. The PTH coupled with GNPs provides good selectivity, high sensitivity and little crosstalk for the dual enzymatic-biosensor. The developed biosensor had good electrocatalytic activity toward the oxidations of glucose and cholesterol, exhibiting a linear range from 0.008 mM to 6.0 mM for glucose with a detection limit of 2.0 μM, and a linear range from 0.002 mM to 1.0 mM for cholesterol with a detection limit of 0.6 μM. The results of the diabetic mice demonstrated that the cholesterol level did not change obviously with the increase of glucose level in serum, while the cholesterol level was induced with the increase of the glucose level in PMs. Previous studies have shown that the large accumulation of cholesterol in macrophage could lead to macrophage foam cell formation, which is the hallmark of early atherosclerosis. This study provides useful further evidences for the development of diabetes-accelerated atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号