首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate gas‐phase fragmentation reactions of phosphorylated peptide ions, matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass (MS/MS) spectra were recorded from synthetic phosphopeptides and from phosphopeptides isolated from natural sources. MALDI‐TOF/TOF (TOF: time‐of‐flight) spectra of synthetic arginine‐containing phosphopeptides revealed a significant increase of y ions resulting from bond cleavages on the C‐terminal side of phosphothreonine or phosphoserine. The same effect was found in ESI‐MS/MS spectra recorded from the singly charged but not from the doubly charged ions of these phosphopeptides. ESI‐MS/MS spectra of doubly charged phosphopeptides containing two arginine residues support the following general fragmentation rule: Increased amide bond cleavage on the C‐terminal side of phosphorylated serines or threonines mainly occurs in peptide ions which do not contain mobile protons. In MALDI‐TOF/TOF spectra of phosphopeptides displaying N‐terminal fragment ions, abundant b–H3PO4 ions resulting from the enhanced dissociation of the pSer/pThr–X bond were detected (X denotes amino acids). Cleavages at phosphoamino acids were found to be particularly predominant in spectra of phosphopeptides containing pSer/pThr–Pro bonds. A quantitative evaluation of a larger set of MALDI‐TOF/TOF spectra recorded from phosphopeptides indicated that phosphoserine residues in arginine‐containing peptides increase the signal intensities of the respective y ions by almost a factor of 3. A less pronounced cleavage‐enhancing effect was observed in some lysine‐containing phosphopeptides without arginine. The proposed peptide fragmentation pathways involve a nucleophilic attack by phosphate oxygen on the carbon center of the peptide backbone amide, which eventually leads to cleavage of the amide bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The influence of several instrument-operating parameters on the product-ion resolution and mass accuracy in matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) post-source decay (PSD) and collision-induced dissociation (CID) experiments is reported. Voltages commonly applied to the reflectron for PSD and CID experiments were found to be non-ideal; optimization of these voltages resulted in better resolution across each segment of the measured PSD spectrum. Mass resolution, calculated as M/DeltaM (FWHM) for the product-ion peaks, was as high as 2500. Additionally, precursor-ion selection and segment mass range setup were each found to have dramatic influences on product-ion mass accuracy. An understanding of the influence of these variables aided in the interpretation of (a-NH3) and (b - NH3) ions observed in the PSD/CID spectra of a number of peptides. In addition, product ions resulting from coincidence peaks in the precursor-ion selection window were found to be a general problem. With the improvements to resolution and optimization of these mass accuracy variables, the mass accuracy of product ions from MALDI TOF PSD and CID experiments was tested with several reference materials, including the peptides Substance P, bradykinin, angiotensin I, and angiotensin II and the synthetic polymers poly(methyl methacrylate) and polystyrene. The absolute error (Da) for each test material was, on average, below 0.1 Da, demonstrating a significant improvement in mass accuracy using the improved operational parameters and an extension of the use of poly(ethylene glycol) (PEG) as a mass calibrant for the PSD/CID spectra.  相似文献   

3.
Optimized procedures have been developed for the addition of sulfonic acid groups to the N-termini of low-level peptides. These procedures have been applied to peptides produced by tryptic digestion of proteins that have been separated by two-dimensional (2-D) gel electrophoresis. The derivatized peptides were sequenced using matrix-assisted laser desorption/ionization (MALDI) post-source decay (PSD) and electrospray ionization-tandem mass spectrometry methods. Reliable PSD sequencing results have been obtained starting with sub-picomole quantities of protein. We estimate that the current PSD sequencing limit is about 300 fmol of protein in the gel. The PSD mass spectra of the derivatized peptides usually allow much more specific protein sequence database searches than those obtained without derivatization. We also report initial automated electrospray ionization-tandem mass spectrometry sequencing of these novel peptide derivatives. Both types of tandem mass spectra provide predictable fragmentation patterns for arginine-terminated peptides. The spectra are easily interpreted de novo, and they facilitate error-tolerant identification of proteins whose sequences have been entered into databases.  相似文献   

4.
Mass spectrometry (MS)‐based quantitative proteomics has become a critical component of biological and clinical research for identification of biomarkers that can be used for early detection of diseases. In particular, MS‐based targeted quantitative proteomics has been recently developed for the detection and validation of biomarker candidates in complex biological samples. In such approaches, synthetic reference peptides that are the stable isotope labeled version of proteotypic peptides of proteins to be quantitated are used as internal standards enabling specific identification and absolute quantification of targeted peptides. The quantification of targeted peptides is achieved using the intensity ratio of a native peptide to the corresponding reference peptide whose spike‐in amount is known. However, a manual calculation of the ratios can be time‐consuming and labor‐intensive, especially when the number of peptides to be tested is large. To establish a liquid chromatography/matrix‐assisted laser desorption/ionization time‐of‐flight tandem mass spectrometry (LC/MALDI TOF/TOF)‐based targeted quantitative proteomics pipeline, we have developed a software named Mass Spectrometry based Quantification (MSQ). This software can be used to automate the quantification and identification of targeted peptides/proteins by the MALDI TOF/TOF platform. MSQ was applied to the detection of a selected group of targeted peptides in pooled human cerebrospinal spinal fluid (CSF) from patients with Alzheimer's disease (AD) in comparison with age‐matched control (OC). The results for the automated quantification and identification of targeted peptides/proteins in CSF were in good agreement with results calculated manually. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A study has been undertaken to evaluate the usefulness of MALDI Q-TOF data for protein identification. The comparison of MS data of protein digests obtained on a conventional MALDI TOF instrument to the MS data from the MALDI Q-TOF reveal peptide patterns with similar intensity ratios. However, comparison of MS/MS Q-TOF data produced by nanoelectrospray versus MALDI reveals striking differences. Peptide fragment ions obtained from doubly charged precursors produced by nanoelectrospray are mainly y-type ions with some b-ions in the lower mass range. In contrast, peptide fragment ions produced from the singly charged ions originating from the MALDI source are a mixture of y-, b- and a-ions accompanied by ions resulting from neutral loss of ammonia or water. The ratio and intensity of these fragment ions is found to be strongly sequence dependent for MALDI generated ions. The singly charged peptides generated by MALDI show a preferential cleavage of the C-terminal bond of acidic residues aspartic and glutamic acid and the N-terminal bond of proline. This preferential cleavage can be explained by the mobile proton model and is present in peptides that contain both arginine and an acidic amino acid. The MALDI Q-TOF MS/MS data of 24 out of 26 proteolytic peptides produced by trypsin or Asp-N digestions were successfully used for protein identification via database searching, thus indicating the general usefulness of the data for protein identification. De novo sequencing using a mixture of 160/18O water during digestion has been explored and de novo sequences for a number of peptides have been obtained.  相似文献   

6.
Negative ion production from peptides and proteins was investigated by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. Although most research on peptide and protein identification with ionization by MALDI has involved the detection of positive ions, for some acidic peptides protonated molecules are not easily formed because the side chains of acidic residues are more likely to lose a proton and form a deprotonated species. After investigating more than 30 peptides and proteins in both positive and negative ion modes, [M–H] ions were detected in the negative ion mode for all peptides and proteins although the matrix used was 2,5‐dihydroxybenzoic acid (DHB), which is a good proton donor and favors the positive ion mode production of [M+H]+ ions. Even for highly basic peptides without an acidic site, such as myosin kinase inhibiting peptide and substance P, good negative ion signals were observed. Conversely, gastrin I (1‐14), a peptide without a highly basic site, will form positive ions. In addition, spectra obtained in the negative ion mode are usually cleaner due to absence of alkali metal adducts. This can be useful during precursor ion isolation for MS/MS studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The photodissociation by 157 nm light of singly- and doubly-charged peptide ions containing C- or N-terminal arginine residues was studied in a linear ion trap mass spectrometer. Singly-charged peptides yielded primarily x- and a-type ions, depending on the location of the arginine residue, along with some related side-chain fragments. These results are consistent with our previous work using a tandem time-of-flight (TOF) instrument with a vacuum matrix-assisted laser desorption/ionization (MALDI) source. Thus, the different internal energies of precursor ions in the two experiments seem to have little effect on their photofragmentation. For doubly-charged peptides, the dominant fragments observed in both photodissociation and collisionally induced dissociation (CID) experiments are b- and y-type ions. Preliminary experiments demonstrating fragmentation of multiply-charged ubiquitin ions by 157 nm photodissociation are also presented.  相似文献   

8.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

9.
Post-translational modifications (PTMs) of proteins are essential for proper function, as they regulate many aspects of a protein's activity and interaction with substrates. When analyzing modified peptides derived from such proteins by mass spectrometry, these modifications can dissociate, producing either a marker ion or neutral loss characteristic of the modification, which have conventionally been monitored with a precursor ion scan or neutral loss scan, respectively. Although powerful, both precursor ion scans and neutral loss scans can only screen for one particular modification at a time. This has led to the development of multiple neutral loss monitoring (MNM) for neutral losses and multiple precursor ion monitoring (MPM) for marker ions on electrospray instruments. Here, we report their implementation on a matrix-assisted laser desorption/ionization (MALDI) instrument as well as the inception of a novel scan strategy termed targeted multiple precursor ion monitoring (tMPM). This latter scan strategy has been developed on a MALDI tandem time-of-flight (TOF/TOF) mass spectrometer for the identification of multiple PTMs via their associated marker ions by manipulating certain components of the instrument, notably the timed ion selector and the delayed extraction source 2. Targeted MPM combined with a second approach, multiple neutral loss monitoring (MNM), is shown to be a successful approach in the identification of PTMs, identifying multiple modified peptides in a complex sample matrix.  相似文献   

10.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

11.
A simple method of solid-phase derivatization and sequencing of tryptic peptides has been developed for rapid and unambiguous identification of spots on two-dimensional gels using post-source decay (PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The proteolytic digests of proteins are chemically modified by 4-sulfophenyl isothiocyanate. The derivatization reaction introduces a negative sulfonic acid group at the N-terminus of a peptide, which can increase the efficiency of PSD fragmentation and enable the selective detection of only a single series of fragment ions (y-ions). This chemically assisted method avoids the limitation of high background normally observed in MALDI-PSD spectra, and makes the spectra easier to interpret and facilitates de novo sequencing of internal fragment. The modification reaction is conducted in C(18) microZipTips to decrease the background and to enhance the signal/noise. Derivatization procedures were optimized for MALDI-PSD to increase the structural information and to obtain a complete peptide sequence even in critical cases. The MALDI-PSD mass spectra of two model peptides and their sulfonated derivatives are compared. For some proteins unambiguous identification could be achieved by MALDI-PSD sequencing of derivatized peptides obtained from in-gel digests of phosphorylase B and proteins of hepatic satellite cells (HSC).  相似文献   

12.
The reagent 4-sulfophenyl isothiocyanate (SPITC) is an effective, stable, and inexpensive alternative to commercially available reagents used in the N-terminal sulfonation of peptides for enhanced postsource decay (PSD) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analyses. However, suppression of ionization of sulfonated peptides due to sample and matrix contaminants such as sodium can be a problem when using prestructured MALDI target sample supports, such as the Bruker Daltonics AnchorChip. We show that use of the salt-tolerant matrix 2,4,6-trihydroxyacetophenone containing diammonium citrate (THAP/DAC) as an alternative to alpha-cyanohydroxycinnamic acid (HCCA) reduces the need for extensive washing of ZipTip-bound peptides or additional on-target sample clean-up steps. Use of the THAP/DAC matrix results in selective ionization of sulfonated peptides with greater peptide coverage, as well as detection of higher mass derivatized peptides, than was observed for HCCA or THAP alone. The THAP/DAC matrix is quite tolerant of sodium contamination, with SPITC-peptides detectable in preparations containing up to 50 mM NaCl. In addition, THAP/DAC matrix was found to promote efficient PSD fragmentation of sulfonated peptides. We demonstrated the utility of using the THAP/DAC MALDI matrix for peptide sequencing with DNA polymerase beta tryptic peptide mixture, as well as tryptic peptides derived from Xiphophorus maculatus brain extract proteins previously separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE).  相似文献   

13.
The term reactive oxygen species refers to small molecules that can oxidize, for example, nearby proteins, especially cysteine, methionine, tryptophan, and tyrosine residues. Tryptophan oxidation is always irreversible in the cell and can yield several oxidation products, such as 5-hydroxy-tryptophan (5-HTP), oxindolylalanine (Oia), kynurenine (Kyn), and N-formyl-kynurenine (NFK). Because of the severe effects that oxidized tryptophan residues can have on proteins, there is a great need to develop generally applicable and highly sensitive techniques to identify the oxidized residue and the oxidation product. Here, the fragmentation behavior of synthetic peptides corresponding to sequences recently identified in three skeletal muscle proteins as containing oxidized tryptophan residues were studied using postsource decay and collision-induced dissociation (CID) in matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry (MS) and CID in an electrospray ionization (ESI) double quadrupole TOF-MS. For each sequence, a panel of five different peptides containing Trp, 5-HTP, Kyn, NFK, or Oia residue was studied. It was always possible to identify the modified positions by the y-series and also to distinguish the different oxidation products by characteristic fragment ions in the lower mass range by tandem MS. NFK- and Kyn-containing peptides displayed an intense signal at m/z 174.1, which could be useful in identifying accordingly modified peptides by a sensitive precursor ion scan. Most importantly, it was always possible to distinguish isomeric 5-HTP and Oia residues. In ESI- and MALDI-MS/MS, this was achieved by the signal intensity ratios of two signals obtained at m/z 130.1 and 146.1. In addition, high collision energy CID in the MALDI-TOF/TOF-MS also permitted the identification of these two isomeric residues by their v- and w-ions, respectively.  相似文献   

14.
Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.  相似文献   

15.
Electrospray mass spectrometry (ES/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF/MS) were used to provide mass spectra from seven elapid snake venoms. Spectral interpretation was much simpler for MALDI/TOF/MS. ES/MS proved more useful for the provision of molecular weight data for very closely related peptides, but suppression of higher molecular weight compounds was seen to occur during flow injection analysis. MALDI/TOF/MS proved useful for providing a complete picture of the venom, but the low resolution led to obscuring of major ions, and the mass accuracy was poorer for known peptides. Suppression also occurred during MALDI/TOF/MS but could be overcome using alternative matrices because the spectra were very dependent on the choice of matrix. ES/MS and MALDI/TOF/MS provide complementary and confirmatory information such that for the anal sis of complex peptide mixtures (snake venoms), the use of both techniques is desirable.  相似文献   

16.
Current biological studies have been advanced by the continuous development of robust, accurate, and sensitive mass spectrometric technologies. The MALDI LTQ Orbitrap is a new addition to the Orbitrap configurations, known for their high resolving power and accuracy. This configuration provides features inherent to the MALDI source, such as reduced spectra complexity, forgiveness to contaminants, and sample retention for follow-up analyses with targeted or hypothesis-driven questions. Here we investigate its performance for characterizing the composition of isolated protein complexes. To facilitate the assessment, we selected two well characterized complexes from Saccharomyces cerevisiae, Apl1 and Nup84. Manual and automatic MS and MS/MS analyses readily resolved their compositions, with increased confidence of protein identification compared with our previous reports using MALDI QqTOF and MALDI IT. CID fragmentation of singly-charged peptides provided sufficient information for conclusive identification of the isolated proteins. We then assessed the resolution, accuracy, and sensitivity provided by this instrument in the context of analyzing the isolated protein assemblies. Our analysis of complex mixtures of singly-charged ions up to m/z 4000 showed that (1) the resolving power, inversely proportional to the square root of m/z, had over four orders of magnitude dynamic range; (2) internal calibration led to improved accuracy, with an average absolute mass error of 0. 5 ppm and a distribution centered at 0 ppm; and (3) subfemtomole sensitivity was achieved using both CHCA and DHB matrices. Additionally, our analyses of a synthetic phosphorylated peptide in mixtures showed subfemtomole level of detection using neutral loss scanning.  相似文献   

17.
Guanidination of the epsilon-amino group of lysine-terminated tryptic peptides can be accomplished selectively in one step with O-methylisourea hydrogen sulfate. This reaction converts lysine residues into more basic homoarginine residues. It also protects the epsilon-amino groups against unwanted reaction with sulfonation reagents, which can then be used to selectively modify the N-termini of tryptic peptides. The combined reactions convert lysine-terminated tryptic peptides into modified peptides that are suitable for de novo sequencing by postsource decay matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The guanidination reaction is very pH dependent. Product yields and reaction kinetics were studied in aqueous solution using either NaOH or diisopropylethylamine as the base. Methods are reported for derivatizing and sequencing lysine-terminated tryptic peptides at low pmole levels. The postsource decay (PSD) MALDI tandem mass spectra of a model peptide (VGGYGYGAK), the homoarginine analog and the sulfonated homoarginine analog are compared. These spectra show the influence that each chemical modification has on the peptide fragmentation pattern. Finally, we demonstrate that definitive protein identifications can be achieved by PSD MALDI sequencing of derivatized peptides obtained from solution digests of model proteins and from in-gel digests of 2D-gel separated proteins.  相似文献   

18.
Due to its very short analysis time, its high sensitivity and ease of automation, matrix-assisted laser desorption/ionization (MALDI)-peptide mass fingerprinting has become the preferred method for identifying proteins of which the sequences are available in databases. However, many protein samples cannot be unambiguously identified by exclusively using their peptide mass fingerprints (e.g., protein mixtures, heavily posttranslationally modified proteins and small proteins). In these cases, additional sequence information is needed and one of the obvious choices when working with MALDI-mass spectrometry (MS) is to choose for post source decay (PSD) analysis on selected peptides. This can be performed on the same sample which is used for peptide mass fingerprinting. Although in this type of peptide analysis, fragmentation yields are very low and PSD spectra are often very difficult to interpret manually, we here report upon our five years of experience with the use of PSD spectra for protein identification in sequence (protein or expressed sequence tag (EST)) databases. The combination of peptide mass fingerprinting and PSD and analysis described here generally leads to unambiguous protein identification in the amount of material range generally encountered in most proteome studies.  相似文献   

19.
A collision cross-section database of singly-charged peptide ions   总被引:2,自引:1,他引:1  
A database of ion-neutral collision cross-sections for singly-charged peptide ions is presented. The peptides included in the database were generated by enzymatic digestion of known proteins using three different enzymes, resulting in peptides that differ in terms of amino acid composition as well as N-terminal and C-terminal residues. The ion-neutral collision cross-sections were measured using ion mobility (IM) spectrometry that is directly coupled to a time-of-flight (TOF) mass spectrometer. The ions were formed by a matrix-assisted laser desorption ionization (MALDI) ion source operated at pressures (He bath gas) of 2 to 3 torr. The majority (63%) of the peptide ion collision cross-sections correlate well with structures that are best described as charge-solvated globules, but a significant number of the peptide ions exhibit collision cross-sections that are significantly larger or smaller than the average, globular mobility-mass correlation. Of the peptide ions having larger than average collision cross-sections, approximately 71% are derived from trypsin digestion (C-terminal Arg or Lys residues) and most of the peptide ions that have smaller (than globular) collision cross-sections are derived from pepsin digestion (90%).  相似文献   

20.
Application of matrix‐assisted laser‐desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3‐hydroxypicolinic acid (3‐HPA) and α‐cyano‐4‐hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3‐HPA and CCA were found to be hot matrices, and 3‐HPA not as good as CCA and 2,5‐dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3‐HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive‐ion and negative‐ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (?80 Da) and phosphoric acid (?98 Da) from the phosphorylated‐residue‐containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for ‘sweet’ spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in‐solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass‐to‐charge values and LIFT TOF‐TOF spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号