首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
LOCALIZATION OF MONO-L-ASPARTYL CHLORIN e6 (NPe6) IN MOUSE TISSUES   总被引:1,自引:0,他引:1  
Abstract It is known that HpD is retained longer by malignant tissue than normal tissue and is therefore a useful material for photodynamic therapy (PDT). Currently, vigorous research is being conducted throughout the world to discover a new material which can have greater cancer cell affinity than hematoporphyrin derivative (HpD) and will be used effectively for PDT. Investigation has been conducted to determine the spectral characteristics and cancer cell affinity of NPe6, a recently developed material.
Structurally, a double bond on the D-ring of the porphyrin ring of mono-L-aspartyl chlorin e6 (NPe6) has been reduced, thereby changing its spectral properties from that of HpD. This difference accounts for the stronger absorption bands in wavelengths longer than those of HpD. Furthermore, NPe6 in tumor showed stronger absorption at 660 nm than HpD. Absorption by hemoglobin (Hb) in the blood occurs at wavelengths in the range 500-600 nm, thereby lowering light transmittance. A compound which has a strong absorption band at wavelengths longer than 600 nm and consequently is not affected by Hb will naturally be activated by light at a greater depth in tissue than compounds which do not share this characteristic. The localization of NPe6 in sarcoma and various internal organs was examined with an endoscopic spectrophotometer using an excimer dye laser. After 72 h i.v. NPe6 injection, the results indicate that NPe6 has 10 times greater uptake in malignant tissue cells than in normal organs. Based on the above observations, it was concluded that NPe6 could be effective for PDT if toxicity is low and that this compound has a high malignant tissue affinity.  相似文献   

2.
Abstract— The effect of charge on the cellular uptake, localization and phototoxicity of conjugates between chlorine6 ( c e6) and poly-L-lysine was studied in vitro. These conjugates (average MW35–55 kDa) were synthesized to have polycationic, polyanionic or neutral charges. Two human cell lines (A431 epidermoid carcinoma cells and EA.hy926 hybrid endothelial cells) were studied and the cellular uptake of c e6 delivered by the conjugates of varying charge and free c e6 was measured at conjugate c e6 equivalent concentrations up to 0.4 μM. Uptake was time and concentration dependent and temperature dependent in the case of neutral and anionic conjugates. Relative uptake at 6 h for A431 cells was 73:15:4:1 and for EA. hy926 cells was 63:11:3:1 for cationic, anionic, neutral and free c e6, respectively, but EA. hy926 cells took up 1.5-2 times as much c e6 from all the conjugates as A431 cells. Localization as studied by fluorescence microscopy indicated that the cationic conjugate was in aggregates bound to the plasma membrane, while the other forms were internalized in organelles and membranes. Phototoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-diphenyltetra-zolium bromide (MTT) assay after irradiation with5–20 J cm−2of 666 nm light. In contrast to the uptake, the order of phototoxicity for both cell types per mole of c e6 uptake per cell was neutral ≫ anionic > cationic > free c e6. Polymeric c e6 conjugates bearing positive, negative and neutral charges may have different tissue-localizing properties and could play a role in photodynamic therapy.  相似文献   

3.
As a global health problem, liver fibrosis still does not have approved treatment. It was proved that N-(3,4,5-trichlorophenyl)-2(3-nitrobenzenesulfonamide) benzamide (IMB16-4) has anti-hepatic fibrosis activity. However, IMB16-4 displays poor water solubility and poor bioavailability. We are devoted to developing biodegraded liposome-coated polymeric nanoparticles (LNPs) as IMB16-4 delivery systems for improving aqueous solubility, cellular uptake, and anti-fibrotic effects. The physical states of IMB16-4−LNPs were analyzed using a transmission electron microscope (TEM), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The results show that IMB16-4−LNPs increased the drug loading compared to liposomes and enhanced cellular uptake behavior compared with IMB16-4−NPs. In addition, IMB16-4−LNPs could repress the expression of hepatic fibrogenesis-associated proteins, indicating that IMB16-4−LNPs exhibited evident anti-fibrotic effects.  相似文献   

4.
采用密度泛函理论在B3LYP/6-31G*水平上对二氢卟吩e6(简称e6)及设计的6个e6赖氨酸酰胺进行几何优化, 对优化构型用B3LYP/6-31G**法进行单点计算, 并用含时密度泛函理论LSDA/6-31G**方法计算电子吸收光谱. 结果表明, 赖氨酸的ε-NH2与e6连接的酰胺更稳定, 其中, 15位的乙酰胺Yε最稳定. 形成赖氨酸酰胺改善了e6 的水溶性, 有利于药物吸收. 各e6 赖氨酸酰胺的前线轨道集中于二氢卟吩环, 由于连接酰胺基侧链的二氢卟吩环平面性有所下降, 前线轨道能隙略为升高, 最大电子吸收波长相对于e6 蓝移16-39 nm, 但仍处于光动力治疗窗口“600-900 nm”. 酰胺链的构象对吸收波长影响较大, Yε三个较稳定构象中, 酰胺链垂直于二氢卟吩环的Yε1和Yε2的二氢卟吩环平面性较好, 最大吸收波长比酰胺链与二氢卟吩环近似平面的Yε红移53、50nm, 三者平均值较e6红移18 nm.  相似文献   

5.
Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.  相似文献   

6.
研究了细胞培养基中的胎牛血清(FBS)对DNA四面体(Tetrahedral DNA nanostructure,TDNs)进入HeLa细胞的速度和内吞途径的影响.采用自组装技术得到荧光标记的TDNs结构,利用HPLC技术分离得到纯度>95%的TDNs单体,分别采用流式细胞术和共聚焦显微成像等技术比较了在有无血清的情况下,细胞摄取量随时间的变化以及FBS对TDNs摄取途径的影响.实验结果表明,TDNs在培养基和细胞裂解液环境中可以稳定存在12 h以上,培养基中的FBS能够提高HeLa细胞对四面体的摄取量, 但并未改变TDNs进入HeLa细胞的内吞途径.本研究揭示了环境中蛋白质等生物分子对于DNA四面体结构与细胞界面相互作用的影响,为基于DNA纳米材料的细胞学纳米载体的设计和优化提供了新思路.  相似文献   

7.
Russian Journal of Physical Chemistry A - The effect amphiphic polymer poly-N-vinylpyrrolidone (PVP) and polysaccharides (PSs), sodium alginate (SA) and hyaluronic acid (HA), have on the...  相似文献   

8.
The chlorophyll‐derivative chlorin e6 (Ce6) identified in the retinas of deep‐sea ocean fish is proposed to play a functional role in red bioluminescence detection. Fluorescence and 1H NMR spectroscopy studies with the bovine dim‐light photoreceptor, rhodopsin, indicate that Ce6 weakly binds to it with μm affinity. Absorbance spectra prove that red light sensitivity enhancement is not brought about by a shift in the absorbance maximum of rhodopsin. 19F NMR experiments with samples where 19F labels are either placed at the cytoplasmic binding site or incorporated as fluorinated retinal indicate that the cytoplasmic domain is highly perturbed by binding, while little to no changes are detected near the retinal. Binding of Ce6 also inhibits G‐protein activation. Chemical shift changes in 1H‐15N NMR spectroscopy of 15N‐Trp labeled bovine rhodopsin reveal that Ce6 binding perturbs the entire structure. These results provide experimental evidence that Ce6 is an allosteric modulator of rhodopsin.  相似文献   

9.
Meloxicam (MLX), which belongs to the oxicam nonsteroidal anti-inflammatory drug derivatives, is an inhibitor of the cyclooxygenase-2 (COX-2) enzyme. Cutaneous adverse effects caused by interaction between UVA radiation and exogenous factors can manifest as phototoxic reactions. Phototoxicity may be a reason for the accumulation of genetic and molecular changes in long-lived cells with low proliferation potential, leading to tumor development. There are several potentially phototoxic drugs, the active component of which is meloxicam. The research aimed to evaluate the influence of MLX and UVAR on skin cells—fibroblasts and melanocytes homeostasis. The obtained results indicated that co-treatment with MLX and UVAR inhibited skin cell proliferation, proportionally to the drug concentration. The observation was confirmed by cytometric analysis of the cell number and viability. The phototoxic effect of MLX was revealed in morphological changes. It was stated that MLX with UVAR lowered the mitochondrial transmembrane potential and changed the cell cycle profile. Additionally, MLX and UVAR caused the disruption of redox homeostasis by lowering the intracellular level of reduced thiols. The presented study revealed that the phototoxic activity of MLX is associated with oxidative stress induction and disruptions in cell homeostasis. The differences in the phototoxic effects of MLX at the cellular level may be related to the different content of melanin pigments.  相似文献   

10.
Abstract— Little is directly known about the influence of the local environment experienced by a photosensitizer in a biological system on its photophysics and photochemistry. In this paper, we have addressed this issue by correlating mechanistic studies using laser flash photolysis with cellular phototoxicity data, obtained under the same experimental conditions. In particular, we have focused on the interaction between local concentrations of photosensitizer (deuteroporphyrin) and oxygen in determining the mechanism of phototoxicity in L1210 cells. In cells, as well as in models such as liposomes and red blood cell ghosts, hypochromicity and a reduction in fluorescence and intersystem crossing yields are observed on increasing the photosensitizer concentration between 0.5 and 20 μM, which illustrates the onset of a self-association. In aerated cellular preparations, the phototoxicity is predominantly type II (singlet oxygen) for all concentrations studied but an oxygen-independent mechanism occurs at the higher concentrations in deaerated samples. These observations are readily explained by consideration of triplet state kinetics as a function of oxygen and photosensitizer concentrations in cells. The rate constant for quenching of the photosensitizer triplet state by oxygen in cells was measured as 6.6 × 108 M?1 s?1 and by photosensitizer ground state as -106M?1s?1 (in terms of local concentration). The latter reaction gave rise to a long-lived species that is presumably responsible for the oxygen-independent phototoxicity observed at the higher photosensitizer concentrations used. This self-quenching of the triplet state is postulated to arise from electron transfer resulting in radical ion formation. Under conditions where no self-quenching contributes, the phototoxicity measured as a function of oxygen concentration correlates well with a model based on the determined kinetic parameters, thus, unambiguously proving the intermediacy of singlet oxygen. These effects should be borne in mind when interpreting phototoxicity mechanisms from in vitro cell studies. The excellent correlation achieved between laser flash photolysis data and measured phototoxicity gives credence to the direct use of photophysical techniques to elucidate photochemical mechanisms in biological media.  相似文献   

11.
Zinc (Zn2+) deficiency causes retinal dysfunctions such as night blindness and neurodegeneration. Because Zn2+ binds directly to the photoreceptor rhodopsin and alters its stability, the stabilization of rhodopsin may be key to prevention and treatment of retinal dysfunctions. In this paper, we investigated if not only trace metals but also other nutrients may stabilize rhodopsin structure in vitro. Detailed studies of the thermal stability of secondary and tertiary structure of rhodopsin in the presence and absence of the chlorophyll derivative chlorin e6 alone and together with bivalent metal ions Zn2+, Cu2+, Fe2+, Ni2+, Mg2+and Mn2+ over a temperature range 5–100°C were conducted using circular dichroism and fluorescence spectroscopy. When both chlorin e6 and Zn2+ are present, a pronounced increase in the thermal stability of overall secondary structure content is observed compared to either compound alone. This additive capacity is also noted with Cu2+, but not when other metal ions and chlorin e6 are combined.  相似文献   

12.
Lanthanide-doped upconversion nanoparticles(UCNPs) are great promising to apply to biomedical imaging and therapy. We prepared NaYF4:Yb3+,Er3+ nanoparticles with different surface ligands, i.e., without any ligands(bare), coordinated with 2-aminoethyl dihydrogen phosphate(AEP), polyacrylic acid(PAA) or polyallylamine (PAAm), via a simple two-step ligand exchange of oleic acid capped NaYF4:Yb3+,Er3+ nanoparticles. Although the surface modification retained the crystal structure and transimission electron microscope(TEM) size distribution of the nanoparticles, and good dispersibility in aqueous solution and did not significantly change the upconversion luminescence, distinct differences were observed in the surface charge and hydrodynamic diameter. The cellular uptake and cytotoxicity of the nanoparticles were studied on two different cell lines, breast cancer MCF-7 and fibroblast 3T3. Confocal microscopy images demonstrate that PAAm-coordinated UCNPs can enhance the cellular uptake and endocytosis, whereas AEP- and PAA-coordinated UCNPs show a very low level of nonspecific adsorption. Biocompatibility studies based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, however, indicate that PAAm-coordinated UCNPs are more toxic than the other two, and thus need further modifiaction(like PEG coordinating) to improve their biocompatibility. These results are important to the knowledge base required for the biomedical application of the UCNPs.  相似文献   

13.
Previous work has shown that indocyanine green (ICG)‐assisted peeling of the internal limiting membrane during vitreoretinal surgery may damage the retinal pigment epithelium (RPE). The present study tested the direct toxic effects and phototoxic effects of ICG on cultured human RPE. RPE cells were exposed to ICG (0.5%, 5 min) with or without lutein (20 μM), followed by light irradiation at different doses of light energy (1.0,3.0 and 10.0 J/cm2). After 48 h, cells were collected and stained with trypan blue to obtain the number of viable and nonviable cells in different groups. Cultures exposed to ICG without light irradiation showed a significant decrease of viable cells (‐13.3%) and an increase of nonviable cells (x2.5‐fold) compared with cultures not exposed to either ICG or light, indicating the presence of direct toxic effects of ICG. In cultures exposed to ICG plus light irradiation (10.0 J/cm2), viable cells decreased significantly (‐45.0%) and nonviable cells increased significantly (x4.4‐fold) compared with cultures exposed to ICG alone. The damage to the RPE cells depended on the dose of light (1.0–10.0 J/cm2), indicating that ICG has a phototoxic effect as well as a toxic one. Lutein, an endogenous ocular antioxidant, had a protective effect on cultures exposed to ICG and light, cells treated with leutin showed an increase of viable cells (+74.6%) and decrease of nonviable cells (‐74.4%) compared with cultures without leutin but not on cultures exposed to ICG alone. Thus, it seems that photoactivated ICG kills cells through a photoxidative mechanism. Our study suggests that preoperative oral administration of lutein may protect against the phototoxic‐induced damage of ICG on the RPE cells.  相似文献   

14.
Polymeric carriers are extensively used in photodynamic therapy (PDT) for increase of efficacy of photosensitizers. Here, we report the influence of nine Pluronic copolymers on phototoxicity of chlorin e6 (Ce6), in particular 5‐ to 7‐fold rise in the phototoxicity caused by hydrophilic Pluronics F127, F108, F68 and F87 and practically no influence on Ce6 of more hydrophobic polymers. The revealed value of 0.2 mg mL?1 of Pluronic F127 concentration sufficient for half‐of‐maximal increase of Ce6 photodynamic activity proved to be close to 0.16 mg mL?1 inherent in well‐documented carrier poly(N‐vinylpyrrolidone) (PVP). The dissociation constants of Ce6 complexes with Pluronic F127 and PVP that were estimated from UV spectra were 0.252 and 0.036 mg mL?1, respectively, indicating higher stability of Ce6 complex with PVP. According to the results of 1H‐NMR studies of Ce6 complexes, the porphyrin interacts not only with hydrophobic regions but also with hydrophilic sides of both polymers.  相似文献   

15.
Gold nanoparticles exhibit unique spectral properties that make them ideal for biosensing, imaging, drug delivery, and other therapeutic applications. Interaction of gold nanoparticles within biological environments is dependent on surface characteristics, which may rely on particular capping agents. In this study, gold nanospheres (GNS) synthesized with different capping agents??specifically citric acid (CA) and tannic acid (TA)??were compared for serum protein adsorption and cellular uptake into a lung epithelial cell line (A549). Both GNS samples exhibited noticeable protein adsorption based on surface charge data after exposure to serum proteins. Light scattering measurements revealed that GNS-CA-protein composites were smaller and less dense compared to GNS-TA-protein composites. The cell uptake characteristics of these nanoparticles were also different. GNS-CA formed large clusters and elicited high uptake, while GNS-TA were taken up as discrete particles, possibly through nonendosomal mechanisms. These results indicate that the capping agents used for GNS synthesis result in unique biological interactions.  相似文献   

16.
Excessive oxidative stress plays a role in hepatotoxicity and the pathogenesis of hepatic diseases. In our previous study, the phenolic extract of beluga lentil (BLE) showed the most potent in vitro antioxidant activity among extracts of four common varieties of lentils; thus, we hypothesized that BLE might protect liver cells against oxidative stress-induced cytotoxicity. BLE was evaluated for its protective effects against oxidative stress-induced hepatotoxicity in AML12 mouse hepatocytes and BALB/c mice. H2O2 treatment caused a marked decrease in cell viability; however, pretreatment with BLE (25–100 μg/mL) for 24 h significantly preserved the viability of H2O2-treated cells up to about 50% at 100 μg/mL. As expected, BLE dramatically reduced intracellular reactive oxygen species (ROS) levels in a dose-dependent manner in H2O2-treated cells. Further mechanistic studies demonstrated that BLE reduced cellular ROS levels, partly by increasing expression of antioxidant genes. Furthermore, pretreatment with BLE (400 mg/kg) for 2 weeks significantly reduced serum levels of alanine transaminase and triglyceride by about 49% and 40%, respectively, and increased the expression and activity of glutathione peroxidase in CCl4-treated BALB/c mice. These results suggest that BLE protects liver cells against oxidative stress, partly by inducing cellular antioxidant system; thus, it represents a potential source of nutraceuticals with hepatoprotective effects.  相似文献   

17.
On the basis of spectral fluorescence and polarization measurements and results obtained on the luminescence quenching of the membrane fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) by incorporated chlorin e6 (chl e6) molecules, it is shown that the interaction of the water-soluble pigment with smaller unilamellar lipid vesicles occurs by a mechanism of partition between the aqueous and lipid phases (partition coefficient Kp = 6.7 x 10(3) and provides rigid fixing of chl e6 monomers at the boundary between the polar and non-polar parts of the lipid membrane. In terms of inductive resonance electronic excitation energy transfer between DPH and chl e6 (R0 = 36.2 A), we have analysed data on DPH fluorescence quenching under different conditions of chl e6 localization in the lipid bilayer and have concluded that the incorporation of the pigment molecules into the vesicles from the aqueous phase occurs mainly into the external monolayer.  相似文献   

18.
Human serum paraoxonase 1 (PON1; EC 3.1.8.1) is a high-density lipoprotein associated, calcium-dependent enzyme that hydrolyses aromatic esters, organophosphates and lactones and can protect the low-density lipoprotein against oxidation. In this study, in vitro inhibition effect of some dihydroxy coumarin compounds namely 6,7-dihydroxy-3-(2-methylphenyl)-2H-chromen-2-one (A), 6,7-dihydroxy-3-(3-methylphenyl)-2H-chromen-2-one (B) and 6,7-dihydroxy-3-(4-methylphenyl)-2H-chromen-2-one (C) on purified PON1 were investigated by using paraoxon as a substrate. PON1 was purified using two-step procedures, namely ammonium sulphate precipitation and Sepharose-4B-l-tyrosine-1-naphthylamine hydrophobic interaction chromatography. The purified enzyme had a specific activity of 11.76?U/mg. The dihydroxy coumarin derivatives of A and B compounds inhibited PON1 enzyme activity in a noncompetitive inhibition manner with K i of 0.0080?±?0.256 and 0.0003?±?0.018?mM values, respectively. C compound exerted an uncompetitive inhibition of PON1 enzyme activity with K i of 0.0010?±?0.173?mM. Moreover, dihydroxy coumarin derivatives of A, B and C compounds were effective inhibitors on purified human serum PON1 activity with IC50 of 0.012, 0.022 and 0.003?mM values, respectively. IC50 value of unsubstituted 6,7 dihydroxy coumarin was found as 0.178?mM. The present study has demonstrated that PON1 activity is very highly sensitive to studied coumarin derivatives.  相似文献   

19.
Abstract

We carried out studies of the microsomal metabolism of 6-nitrobenzo(a)pyrene (NBaP) to understand why the compound is a marginal carcinogen. Microsomal incubation products were separated by reverse phase high-pressure liquid chromatography. A chromatographic peak with a retention time of 24.8 mins was isolated and examined by ultraviolet, mass and nuclear magnetic resonance spectra. The product was characterized as 6-acetoxy-benzo(a)pyrene. The source of the acetylating agent could be cytosolic.  相似文献   

20.
It is difficult to treat patients with acquired airway stenosis, and the quality of life of such patients is therefore lowered. We have suggested the application of photodynamic therapy (PDT) as a new treatment for airway stenosis and have determined the efficacy of PDT in animal disease models using a second-generation photosensitizer with reduced photosensitivity. An airway stenosis rabbit model induced by scraping of the tracheal mucosa was administered NPe6 (5 mg kg−1), and the stenotic lesion was irradiated with 670 nm light emitted from a cylindrical diffuser tip at 60 J cm−2 under bronchoscopic monitoring. PDT using NPe6 improved airway stenosis ( P  = 0.043) and respiratory stridor. A significant prolongation of survival time was seen in the PDT-treated animals compared to that in the untreated animals ( P  = 0.025) and 44% of the treated animals achieved long-term survival (>60 days). In conclusion, PDT using NPe6 is effective for improvement in airway stenosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号