首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CO2 laser-induced infrared multiphoton decomposition (IRMPD) and SF6 photosensitized decomposition (LPD) of silacyclobutane (SCB) and 1,3-disilacyclobutane (DSCB) in the gas phase results in the very efficient deposition of Si/C/H and SiC materials, and it is inferred that the process is dominated by formation of transient silene; silene rearrangement to methylsilylene; silene and methylsilylene dehydrogenation; and polymerization of SiCHn (n < 4) species. The deposits are sensitive to oxygen. Decomposition and SiC formation are favoured with IRMPD experiments conducted with high-energy fluxes. The laser technique is promising for low-temperature chemical vapour deposition of amorphous SiC.  相似文献   

2.
The decomposition of 1,1‐dimethyl‐1‐silacyclobutane (DMSCB) on a heated tungsten filament has been studied using vacuum ultraviolet laser single photon ionization time‐of‐flight mass spectrometry. It is found that the decomposition of DMSCB on the W filament to form ethene and 1,1‐dimethylsilene is a catalytic process. In addition, two other decomposition channels exist to produce methyl radicals via the Si? CH3 bond cleavage and to form propene (or cyclopropane)/dimethylsilylene. It has been demonstrated that both the formation of ethene and that of propene are stepwise processes initiated by the cleavage of a ring C? C bond and a ring Si? C bond, respectively, to form diradical intermediates, followed by the breaking of the remaining central bonds in the diradicals. The formation of ethene via an initial cleavage of a ring C? C bond is dominant over that of propene via an initial cleavage of a ring Si? C bond. When the collision‐free condition is voided, secondary reactions in the gas‐phase produce various methyl‐substituted 1,3‐disilacyclobutane molecules. The dominant of all is found to be 1,1,3,3‐tetramethyl‐1,3‐disilacyclobutane originated from the dimerization of 1,1‐dimethylsilene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of the Si-H bond on the gas-phase reaction chemistry of trimethylsilane in the hot-wire chemical vapor deposition (HWCVD) process has been studied by examining its decomposition on a hot tungsten filament and the secondary gas-phase reactions in a reactor using a soft laser ionization source coupled with mass spectrometry. Trimethylsilane decomposes on the hot filament via Si-H and Si-CH(3) bond cleavages. A short-chain mechanism is found to dominate in the secondary reactions in the reactor. It has been shown that the hydrogen abstractions of both Si-H and C-H occur simultaneously, with the abstraction of Si-H being favored. Tetramethylsilane and hexamethyldisilane are the two major products formed from the radical recombination reactions in the termination steps. Three methyl-substituted disilacyclobutane molecules, i.e., 1,3-dimethyl-1,3-disilacyclobutane, 1,1,3-trimethyl-1,3-disilacyclobutane, and 1,1,3,3-tetramethyl-1,3-disilacyclobutane are also produced in reactor from the cycloaddition reactions of methyl-substituted silene species. Compared to tetramethylsilane and hexamethyldisilane, a common feature with trimethylsilane is that the short-chain mechanism still dominates. However, a more active involvement of the reactive silene intermediates has been found with trimethylsilane.  相似文献   

4.
To study the effect of an Si-Si bond on gas-phase reaction chemistry in the hot-wire chemical vapor deposition (HWCVD) process with a single source alkylsilane molecule, soft ionization with a vacuum ultraviolet wavelength of 118 nm was used with time-of-flight mass spectrometry to examine the products from the primary decomposition of hexamethyldisilane (HMDS) on a heated tungsten (W) filament and from secondary gas-phase reactions in a HWCVD reactor. It is found that both Si-Si and Si-C bonds break when HMDS decomposes on the W filament. The dominance of the breakage of Si-Si over Si-C bond has been demonstrated. In the reactor, the abstraction of methyl and H atom, respectively, from the abundant HMDS molecules by the dominant primary trimethylsilyl radicals produces tetramethylsilane (TMS) and trimethylsilane (TriMS). Along with TMS and TriMS, various other alkyl-substituted silanes (m/z = 160, 204, 262) and silyl-substituted alkanes (m/z = 218, 276, 290) are also formed from radical combination reactions. With HMDS, an increasing number of Si-Si bonds are found in the gas-phase reaction products aside from the Si-C bond which has been shown to be the major bond connection in the products when TMS is used in the same reactor. Three methyl-substituted 1,3-disilacyclobutane species (m/z = 116, 130, 144) are present in the reactor with HMDS, suggesting a more active involvement from the reactive silene intermediates.  相似文献   

5.
Desorption kinetics of ethene, propene, and butadiene from films exhibiting axially oriented nanoporous‐crystalline δ phases of syndiotactic polystyrene (s‐PS) have been followed by gravimetric and infrared linear dichroism measurements. The reported data can be rationalized by assuming that, after the initial desorption mainly involving molecules absorbed in the amorphous phase, most gaseous molecules are included as guest in the nanoporous‐crystalline phase. This allows establishing a simple method to evaluate guest partition between nanoporous‐crystalline and amorphous polymeric phases, which possibly can be applied for most volatile guest molecules. The described method also allows establishing the presence of one guest molecule (ethene, propene, or butadiene) per cavity of the nanoporous δ form. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

6.
The methanol to olefins conversion over zeolite catalysts is a commercialized process to produce light olefins like ethene and propene but its mechanism is not well understood. We herein investigated the formation of ethene in the methanol to olefins reaction over the H‐ZSM‐5 zeolite. Three types of ethylcyclopentenyl carbocations, that is, the 1‐methyl‐3‐ethylcyclopentenyl, the 1,4‐dimethyl‐3‐ethylcyclopentenyl, and the 1,5‐dimethyl‐3‐ethylcyclopentenyl cation were unambiguously identified under working conditions by both solid‐state and liquid‐state NMR spectroscopy as well as GC‐MS analysis. These carbocations were found to be well correlated to ethene and lower methylbenzenes (xylene and trimethylbenzene). An aromatics‐based paring route provides rationale for the transformation of lower methylbenzenes to ethene through ethylcyclopentenyl cations as the key hydrocarbon‐pool intermediates.  相似文献   

7.
In situ differential electrochemical mass spectrometry (DEMS) and in situ subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS) were used to study the oxidative decomposition products of a propylene carbonate (PC) containing battery electrolyte at metal oxide electrodes. Hydrogen, carbon dioxide, ethane, ethene, propane and propene are typically evolved during electrolyte decomposition in lithium-ion batteries. In our SNIFTIRS and DEMS experiments, additional signals were detected which could not be attributed to these known products. Detailed analysis of these signals indicated the possible evolution of acetone as PC is oxidatively decomposed on the electrode surface.  相似文献   

8.
The bond-dissociation energy of CH bonds in fluoro derivatives of methane, ethane, ethene, propene, and benzene is determined by spectroscopic and quantum chemical methods. The spectroscopic values of the bond-dissociation energy of CH bonds are calculated in terms of fundamental absorption bands in the anharmonic approximation by the variational method using the Morse anharmonic basis. The quantum chemical calculations are performed using the 6-311G(3df, 3pd)/B3LYP basis set. The obtained regularities in variations of the CH bond dissociation energy values upon changes in the molecule structure are discussed.  相似文献   

9.
The suitability of the (n-butCp)2ZrCl2/methylaluminoxane (MAO) catalyst system for the copolymerization of ethene with propene, hexene, and hexadecene was studied and Ind2ZrCl2/MAO was tested as a catalyst for ethene/propene and ethene/hexene copolymerizations. The synergistic effect of longer α-olefin on propene incorporation in ethene/propene/hexene and ethene/propene/hexadecene terpolymerizations was investigated with Et(Ind)2ZrCl2MAO and (n-butCp)2ZrCl2/MAO catalyst systems. The molar masses, molar mass distributions, melting points, and densities of the products were measured. The incorporation of comonomer in the chain was further studied by segregation fractionation techniques (SFT), by differential scanning calorimetry (DSC), studying the β relaxations by dynamic mechanical analysis (DMA) and by studying the microstructure of some copolymers by 13C-NMR. In this study (n-butCp)2ZrCl2 and Ind2ZrCl2 exhibited equal response in copolymerization of ethene and propene and both catalysts were more active towards propene than longer α-olefins. A nearly identical incorporation of propene in the chain was found for the two catalysts when a higher propene feed was used. A lower hexene feed gave a more homogeneous comonomer distribution curve than a higher hexene feed and also showed the presence of branching. In terpolymerizations catalyzed with (n-butCp)2ZrCl2, the hexadecene concentrations of the ethene/propene/hexadecene terpolymers were always very low, and only traces of hexene were detected in ethene/propene/hexene terpolymers. With hexene no clear synergistic effect on the propene incorporation in the terpolymer was detected and with hexadecene the effect of the longer α-olefin was even slightly negative. With an Et(Ind)2ZrCl2/MAO catalyst system both hexene and hexadecene were incorporated in the chain in the terpolymerizations. © 1997 John Wiley & Sons, Inc.  相似文献   

10.
Vinylcyclohexane (VCH) was copolymerized with ethene and propene using methylaluminoxane‐activated metallocene catalysts. The catalyst precursor for the ethene copolymerization was rac‐ethylenebis(indenyl)ZrCl2 ( 1 ). Propene copolymerizations were further studied with Cs‐symmetric isopropylidene(cyclopentadienyl)(fluorenyl)ZrCl2 ( 2 ), C1‐symmetric ethylene(1‐indenyl‐2‐phenyl‐2‐fluorenyl)ZrCl2 ( 3 ), and “meso”‐dimethylsilyl[3‐benzylindenyl)(2‐methylbenz[e]indenyl)]ZrCl2 ( 4 ). Catalyst 1 produced a random ethene–VCH copolymer with very high activity and moderate VCH incorporation. The highest comonomer content in the copolymer was 3.5 mol %. Catalysts 1 and 4 produced poly(propene‐co‐vinylcyclohexane) with moderate to good activities [up to 4900 and 15,400 kg of polymer/(mol of catalyst × h) for 1 and 4 , respectively] under similar reaction conditions but with fairly low comonomer contents (up to 1.0 and 2.0% for 1 and 4 , respectively). Catalysts 2 and 3 , both bearing a fluorenyl moiety, gave propene–VCH copolymers with only negligible amounts of the comonomer. The homopolymerization of VCH was performed with 1 as a reference, and low‐molar‐mass isotactic polyvinylcyclohexane with a low activity was obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6569–6574, 2006  相似文献   

11.
The decomposition and intramolecular H-transfer isomerization reactions of the 1-pentyl radical have been studied at temperatures of 880 to 1055 K and pressures of 80 to 680 kPa using the single pulse shock tube technique and additionally investigated with quantum chemical methods. The 1-pentyl radical was generated by shock heating dilute mixtures of 1-iodopentane and the stable products of its decomposition have been observed by postshock gas chromatographic analysis. Ethene and propene are the main olefin products and account for >97% of the carbon balance from 1-pentyl. Also produced are very small amounts of (E)-2-pentene, (Z)-2-pentene, and 1-butene. The ethene/propene product ratio is pressure dependent and varies from about 3 to 5 over the range of temperatures and pressures studied. Formation of ethene and propene can be related to the concentrations of 1-pentyl and 2-pentyl radicals in the system and the relative rates of five-center intramolecular H-transfer reactions and β C-C bond scissions. The 3-pentyl radical, formed via a four-center intramolecular H transfer, leads to 1-butene and plays only a very minor role in the system. The observed (E/Z)-2-pentenes can arise from a small amount of beta C-H bond scission in the 2-pentyl radical. The current experimental and computational results are considered in conjunction with relevant literature data from lower temperatures to develop a consistent kinetics model that reproduces the observed branching ratios and pressure effects. The present experimental results provide the first available data on the pressure dependence of the olefin product branching ratio for alkyl radical decomposition at high temperatures and require a value of <ΔE(down)(1000 K)> = (675 ± 100) cm(-1) for the average energy transferred in deactivating collisions in an argon bath gas when an exponential-down model is employed. High pressure rate expressions for the relevant H-transfer reactions and β bond scissions are derived and a Rice Ramsberger Kassel Marcus/Master Equation (RRKM/ME) analysis has been performed and used to extrapolate the data to temperatures between 700 and 1900 K and pressures of 10 to 1 × 10(5) kPa.  相似文献   

12.
N‐Heterocyclic carbenes (NHC's) are known to serve as efficient substrates for the stabilization of various transient species possessing low‐valent Group 14 elements and for the generation of double E=C bonds. Herein, we report that the thermal tri‐ and tetramerizations of pyridoannulated silylene 1 lead to the formation of remarkably stable silenes 2 and 3 featuring zwitterionic distribution of electron density. Co‐oligomerization of 1 and its germanium analogue gives a related tetrameric product 4 containing low‐valent germanium atom stabilized by binding with the partial carbene‐character C atom. Bonding situations in 2 – 4 are best described as silene or germene with the significant zwitterionic distribution of electron density. The singlet diradical electronic state of 2 is 10 kcal mol?1 higher than the ground state configuration.  相似文献   

13.
The mechanism of the cycloaddition reaction of forming a spiro-Si-heterocyclic ring compound between singlet dichloroalkylidenesilylene (Cl2C=Si:) and ethene has been investigated with CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has one dominant reaction pathway. The presented rule of this reaction is that the 3p unoccupied orbital of Si in dichloroalkylidene and the π orbital of ethene forming the π → p donor-acceptor bond, resulting in the formation of a three-membered ring intermediate. Ring-enlargement effect make the three-membered ring intermediate isomerizes to a four-membered ring silylene. Due to sp 3 hybridization of Si atom in the four-membered ring silylene, the four-membered ring silylene further combines with ethene to form a spiro-Si-heterocyclic ring compound.  相似文献   

14.
The formation of a 2-hexene radical cation from a propene radical cation and a neutral propene molecule is investigated by means of ab initio UHF and spin projected MP2 calculations, as well as the SVWN and B3LYP levels of density functional theory. A stable addition complex, with loose CC bonds, is found. To proceed from the addition complex to the product, a locally planar transition state must be passed, with a migrating hydrogen located half-way between the donating and the accepting carbon atoms. At the highest computational levels considered, PMP2/6-31G(d,p)//MP2/3-21G and B3LYP/6-31G(d,p), this transition state lies approximately 11 and 13 kcal/mol, respectively, above the addition complex. The high barrier is believed to be one reason why radical cation oligomerization of propene has not been detected experimentally, in contrast to the case of ethene, where the corresponding barrier is only a few kcal/mol. Received: 17 December 1996 / Accepted: 12 May 1997  相似文献   

15.
The reaction of C1 ions with ethene and propene has been studied in the gas phase using a triple quadrupole mass spectrometer.  相似文献   

16.
In 1987, two research groups published the first-ever reports on the synthesis of silylene complexes and presented structural evidence. Since then, a range of synthetic methods have been developed and a number of silylene complexes have been prepared. In 1988, we reported on the first base-stabilized bis(silylene) complexes that can be regarded as being masked silyl(silylene) complexes. These complexes occupy a unique position among silylene and silyl(silylene) complexes in that they provide a convenient tool for studying the reactivity of coordinated silylenes. They are stable enough to be isolated, but the bond between the silylene silicon atom and the internal base can easily be cleaved by thermal perturbation to generate real silyl(silylene) complexes. To date, a number of base-stabilized bis(silylene) complexes have been prepared in which the central metals range from group 5 to group 9. Only two base-free silyl(silylene) complexes have been prepared. One is prepared by reacting a platinum complex with a stable silylene; the other is produced by the photolysis of a tungsten complex in the presence of a hydrodisilane.  相似文献   

17.
Flouty  R.  Abi-Aad  E.  Siffert  S.  Aboukaïs  A. 《Kinetics and Catalysis》2004,45(2):219-226
A total oxidation of propene into CO2 is obtained on pure ceria at 673 K. However, in the presence of molybdenum, propene can be partially oxidized at room temperature. The Electron Paramagnetic Resonance (EPR) indicates changes in the oxidation state of molybdenum occurring upon interaction with propene. It has been found that the concentration of Mo(V) influences the propene conversion. The interaction between propene and molybdenum leads to the formation of surface species that, depending on the strength of their bonding to the surface, can be decomposed to ethene or coke. These results have been confirmed by infrared (FTIR) study. The oxidation reaction of propene is in competition with that of coke or ethene deposit on the catalyst surface, which can explain the decrease of the catalyst activity and selectivity in the presence of high molybdenum loadings.  相似文献   

18.
Increased propene production is presently one of the most significant objectives in petroleum chemistry. Especially the one-step conversion of ethene to propene (ETP reaction, 3C?H? →2C?H?) is the most desired process. In our efforts, nickel ion-loaded mesoporous silica could turn a new type of ETP reaction into reality. The one-step conversion of ethene was 68% and the propene selectivity was 48% in a continuous gas-flow system at 673 K and atmospheric pressure. The reactivity of lower olefins and the dependences of the ETP reaction on the contact time and the partial pressure of ethene were consistent with a reaction mechanism involving dimerization of ethene to 1-butene, isomerization of 1-butene to 2-butene, and metathesis of 2-butene and ethene to yield propene. The reaction was then expanded to an ethanol-to-propene reaction on the same catalyst, in which two possible reaction routes are suggested to form ethene from ethanol. The catalysts were characterized mainly by EXAFS and TPR techniques. The local structures of the nickel species active for the ETP reaction were very similar to that of layered nickel silicate, while those on the inert catalysts were the same as that of NiO particles.  相似文献   

19.
A series of boron- and aluminium-containing MFI zeolites were synthesized and various characterization techniques, such as NMR ((27)Al, (29)Si and (11)B), were employed to study the acidities of zeolites. Moreover, in situ IR was applied to investigate the interaction of methanol and ethene with the acid sites, and those catalytic materials were used for co-reaction of methanol and ethene to produce propene. The production of propene was related to the Al content of the zeolites with Si/Al ratios of higher than 90. It is implied that the presence of boron during the synthesis directed the aluminium to occupy certain tetrahedral sites in the zeolite framework, thus preventing the formation of ethene oligomers, and resulting in increased propene selectivity.  相似文献   

20.
Vanadium atoms have been reacted with different partial pressures of propene in Ar under matrix-isolation conditions, and the products have been observed using Fourier transform infrared (FTIR) spectroscopy. Under dilute propene in Ar conditions, new features are observed in the IR spectra corresponding to a C-H insertion product, identified here as H-V-(η(3)-allyl). Use of d(3)-propene (CD(3)-CH═CH(2)) demonstrates that the initial V-atom insertion occurs at the methyl group of the propene molecule, and DFT calculations have been used to support the identity of the initial product. Upon increasing the partial pressure of propene, additional features corresponding to propane (C(3)H(8)) are observed, with the hydrogen-atom source for the observed hydrogenation demonstrated to be additional propene units. Analysis of a systematic increase in the partial pressure of propene in the system demonstrates that the yield of propane correlates with the decrease of the allyl product, demonstrating the H-V(allyl) species as a reactive intermediate in the overall hydrogenation process. An overall mechanism is proposed to rationalize the formation of the insertion product and ultimately the products of hydrogenation, which agrees with previous gas-phase and matrix-isolation work involving propene and the related system, ethene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号