首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
曾庆松  陈文凯  戴文新  李奕  丁开宁 《催化学报》2009,30(12):1209-1214
 采用密度泛函理论探讨了 TiO2 表面负载 Co2B2 和 Co2B2Pt 合金簇可能的负载构型. 结果表明, Co2B2 和 Co2B2Pt 合金簇倾向于以两个 Co 的形式负载在两个氧上. 态密度分析发现, 负载后, Co2B2 合金簇中部分 Co 原子和 B 原子成键加强, Co2B2Pt 合金簇中 Pt 原子和 B 原子成键也加强, 形成新的轨道. CO 和 O2 在 Co2B2/TiO2 和 Co2B2Pt/TiO2 表面吸附的结果表明, Co2B2Pt/TiO2 催化氧化 CO 性能的提高是由于 Pt 原子提高了 Co2B2 合金簇吸附 CO 和 O2 的能力.  相似文献   

2.
The density functional theory (DFT) and periodic slab model were used to get information concerning the adsorption of HCHO on the FeO(100) surface. A preferred η2-(C,O)-di-σ four-membered ring adsorption conformation on the Fe-top site was found to be the most favorable structure with the predicted adsorption energy of 210.7 kJ/mol. The analysis of density of states, Mulliken population, and vibrational frequencies before and after adsorption showed clear weakening of the carbonyl bond, and high sp3 charact...  相似文献   

3.
4.
The electrooxidation of CO on Ru(0001) and RuO2(100) electrode surfaces were characterized by cyclic voltammetry,AES and RHEED,The CO adlayer was first partially oxidized at 0.8 V, which is controlled by the attack of oxygen species toward the Ru(0001) surface. The remaining CO aldayer oxidation at 0.55 V is related to the combination of CO molecules with oxygen species already located on the surface,In contrast,successive peaks on RuO2(100) at 0.4 V and 0.72 V are observed ,which shows that CO molecules can directly react with two different lattice-oxygen on the surface to carbon dioxide.  相似文献   

5.
采用连续两步光沉积法,在TiO2纳米带(TiO2-NB)表面沉积双金属Au-Ag纳米颗粒制得Au-Ag/TiO2-NB一维纳米结构,并将其组装成纳米纸多孔催化剂(Cat),其结构、形貌和性能经SEM,TEM,ICP,XRD,XPS和UV-Vis表征。以CO低温催化氧化为探针反应,考察了Ag/Au比(n)和还原预处理温度(T)对Cat催化活性的影响。结果表明:Cat0.8400表现出最佳的催化活性,CO转化率达94%。催化剂的失活是由反应初期极小尺寸的金属纳米颗粒团聚烧结和反应过程中中间产物碳酸盐的生成所致。  相似文献   

6.
7.
 运用密度泛函理论中广义梯度近似的 PW91 方法结合周期平板模型, 研究了 NiFeB2 合金簇在 TiO2(110) 面的吸附模式. 结果表明, NiFeB2 平行吸附在 TiO2 面的 Ot-Ot 位最稳定, 吸附能为 526.4 kJ/mol. 为了探明 NiFeB2/TiO2 是否具有催化氧化 CO 活性, 进一步研究了 CO 和 O2 在 NiFeB2/TiO2 面的共吸附行为. 结果表明, CO 和 O2 以 Eley-Rideal 机理共吸附在 Fe 上时, 易形成碳酸盐, 而以 Langmuir-Hinshelwood 机理共吸附在 Fe 上时, O2 发生分解, 与 Fe, Ni 和 B 形成稳定的六元环.  相似文献   

8.
Oxide-supported transition metal systems have been the subject of enormous interest due to the improvement of catalytic properties relative to the separate metal.Thus in this paper,we embark on a systematic study for Pd n (n=1-5) clusters adsorbed on TiO2 (110) surface based on DFT-GGA calculations utilizing periodic supercell models.A single Pd adatom on the defect-free surface prefers to adsorb at a hollow site bridging a protruded oxygen and a five-fold titanium atom along the [110] direction,while Pd dimer is located on the channels with the Pd-Pd bond parallel to the surface.According to the transition states (TSs) search,the adsorbed Pd trimer tends to triangular growth mode,rather than linear mode,while the Pd4 and Pd5 clusters prefer three-dimensional (3D) models.However,the oxygen vacancy has almost no influence on the promotion of Pd n cluster nucleation.Additionally,of particular significance is that the Pd-TiO2 interaction is the main driving force at the beginning of Pd nucleation,whereas the Pd-Pd interaction gets down to control the growth process of Pd cluster as the cluster gets larger.It is hoped that our theoretical study would shed light on further designing high-performance TiO2 supported Pd-based catalysts.  相似文献   

9.
First-principles calculations based on density functional theory (DFr) and the generalized gradient approximation (GGA) have been used to study the adsorption of CO molecule on the Cu2O(111) oxygen-vacancy surface. Calculations indicate that the C-O bond is weakened upon adsorption compared with that over perfect surface. In addition, with the density increase of the defective sites, the adsorption energies of the defect-CO configuration increase whereas the C-O bond nearly remains constant.  相似文献   

10.
The adsorption of C atoms on the α-Fe2O3(001) surface was studied based on density function theory(DFT) ,in which the exchange-correlation potential was chosen as the PBE(Perdew,Burke and Ernzerhof) generalized gradient approximation(GGA) with a plane wave basis set. Upon the optimization on different adsorption sites with coverage of 1/20 and 1/5 ML,it was found that the adsorption of C atoms on the α-Fe2O3(001) surface was chemical adsorption. The coverage can affect the adsorption behavior greatly. Under low coverage,the most stable adsorption geometry lied on the bridged site with the adsorption energy of about 3.22 eV;however,under high coverage,it located at the top site with the energy change of 8.79 eV. Strong chemical reaction has occurred between the C and O atoms at this site. The density of states and population analysis showed that the s,p orbitals of C and p orbital of O give the most contribution to the adsorption bonding. During the adsorption process,O atom shares the electrons with C,and C can only affect the outermost and subsurface layers of α-Fe2O3;the third layer can not be affected obviously.  相似文献   

11.
Based on density functional theory and generalized gradient approximation calculations, the adsorption of Co2B2 and Ni2B2 clusters on the rutile TiO2 (110) surface has been investigated utilizing periodic supercell models. Unambiguously, the results demonstrate that the hollow site turns out to be preferable for Co2B2 cluster while Ti2 site is for Ni2B2 cluster to adsorb. Orbital population analysis indicates a strong interaction between Co2B2 and O atom of TiO2 surface, which can be attributed to the overlap of Co 3d and surface O 2p orbital. Similarly, for Ni2B2 , the bonding interaction occurs mostly through the interaction of Ni 3d/4s and O 2p orbitals. Note that, there is also an interaction within the Co2B2 clusters (Ni2B2) through B 2s/2p and Co 3d orbitals (Ni 3d/4s). Moreover, orbital analysis results shows that the strong bonding between Ni2B2 and Ti2 site is due to the overlap of HOMO of Ni2B2 and d-orbital of five-coordinated titanium atoms.  相似文献   

12.
利用密度泛函理论系统研究了O2与CO在CeO2(110)表面的吸附反应行为. 研究表明, O2在洁净的CeO2(110)表面吸附热力学不利, 而在氧空位表面为强化学吸附, O2分子被活化, 可能是重要的氧化反应物种. CO在洁净的CeO2(110)表面有化学吸附与物理吸附两种构型, 前者形成二齿碳酸盐物种, 后者与表面仅存在弱的相互作用. 在氧空位表面, CO可分子吸附或形成碳酸盐物种, 相应吸附能均较低. 当表面氧空位吸附O2后(O2/Ov), CO可吸附生成碳酸盐或直接生成CO2, 与原位红外光谱结果相一致. 过渡态计算发现,O2/Ov/CeO2(110)表面的三齿碳酸盐物种经两齿、单齿过渡态脱附生成CO2. 利用扩展休克尔分子轨道理论分析了典型吸附构型的电子结构, 说明表面碳酸盐物种三个氧原子电子存在离域作用, 物理吸附的CO及生成的CO2电子结构与相应自由分子相似.  相似文献   

13.
董虹志 《分子催化》2012,26(6):554-559
通过密度泛函理论的第一性原理,模拟了CO2分子在SrTiO3(100)表面TiO2-和SrO-位点上的吸附行为,获得了CO2在几种不同吸附模型下的结构参数及表面吸附能,进而研究了吸附机理和结构稳定性.计算结果表明,当CO2的C原子吸附在SrTiO3(100)表面SrO-及TiO2-位点的氧原子上时,吸附结构较稳定,尤其是C、O原子共吸附在TiO2-位点时最稳定,而其余吸附模型则不稳定.对吸附稳定模型的Mulliken布局数及态密度分析显示:CO2分子在SrTiO3(100)表面吸附主要是由于SrTiO3(100)面的电子跃迁至CO2分子,CO2分子得到电子形成弯曲的CO2-阴离子结构,并伴随着C-O键的伸长,从而达到吸附活化CO2的目的.  相似文献   

14.
The mechanisms of methanol (CH3OH) oxidation on the PtPd(111) alloy surface were systematically investigated by using density functional theory calculations. The energies of all the involved species were analyzed. The results indicated that with the removal of H atoms from adsorbates on PtPd(111) surface, the adsorption energies of (i) CH3OH, CH2OH, CHOH, and COH increased linearly, while those of (ii) CH3OH, CH3O, CH2O, CHO, and CO exhibited odd‐even oscillation. On PtPd(111) surface, CH3OH underwent the preferred initial C H bond scission followed by successive dehydrogenation and then CHO oxidation, that is, CH3OH → CH2OH → CHOH → CHO → CHOOH → COOH → CO2. Importantly, the rate‐determining step of CH3OH oxidation was found to switch from CO → CO2 on Pt(111) to COOH → CO2 + H on PtPd(111) with a lower energy barrier of 0.96 eV. Moreover, water also decomposed into OH more easily on PtPd(111) than on Pt(111). The calculated results indicate that alloying Pt with Pd could efficiently improve its catalytic performance for CH3OH oxidation through altering the primary pathways from the CO path on pure Pt to the non‐CO path on PtPd(111).  相似文献   

15.
Cu2O is an attractive catalyst for the selective reduction of CO2 to methanol. However, the mechanism of the reaction and the role of the Cu species in different oxidation states are not well understood yet. In this work, by first-principles calculations, we investigate the mechanism of the reaction on the Cu2O(110) surface, which is the most selective for methanol, in different degrees of reduction: ideal surface, slightly reduced surface (SRS), and partially reduced surface (PRS). The most favorable reaction pathways on the three surfaces were identified. We found that Cu(I) on the ideal surface is not capable of chemisorbing CO2, but surface oxygen serves as the active site which selectively converts CO2 to CH3OH with a limiting potential of −0.77 V. The Cu(0) on the SRS and PRS promotes the adsorption and reduction of CO2, while the removal of the residue O* becomes potential/rate limiting with a more negative limiting potential than the ideal surface. The SRS is selective to methanol while the PRS becomes selective to methane. The result suggests that the key to high methanol selectivity is to avoid the reduction of Cu(I), which provides a new strategy for the design of more efficient catalysts for selective CO2 reduction to methanol.  相似文献   

16.
采用密度泛函理论(DFT)研究了五种不同金属元素V、Cr、Pd、Pt、Au掺杂二氧化钛纳米管阵列(TNTAs)的性质以及CO在这些二氧化钛纳米管阵列中的吸附和氧化.结果表明:金属的掺杂使TNTAs的带隙减小;弱吸附的CO能够和二氧化钛纳米管阵列中的晶格氧通过氧化还原机理生成CO2,这可归因于纳米管阵列的限域效应和金属元素的掺杂.合适的金属掺杂能促进CO氧化,除Cr以外的金属元素的掺杂降低了CO氧化的活化能垒,特别是Pd或Au的掺杂使能垒降低最为明显.贵金属元素Pd或Au掺杂TiO2纳米管阵列具有优良的光催化性能,可用于CO的低温氧化催化剂.  相似文献   

17.
The monolayer (ML) and submonolayer Pt on both terminations of PbTiO3(110) polar surface have been studied by using density functional theory (DFT) with projector‐augmented wave(PAW) potential and a supercell approach. The most favored ML Pt arrangements on PbTiO and O2 terminations are the hollow site and the short‐bridge site, respectively. By examining the geometries of different ML arrangements, we know that the dominant impetus for stability of the favored adsorption site for PbTiO termination is the Pt–Ti interaction (mainly from covalent bonding), while that for O2 termination is the Pt–O interaction (mainly from ionic bonding). In addition, the appearance of the gap electronic states in the outermost layers of each termination indicates that a channel for charge transfer between adsorbed layer and substrate is formed. Moreover, the interface hybridization between Pt 5d and O 2p orbitals is also observed, especially for ML Pt on O2 termination. The stability sequences for various arrangements of 1/2 ML Pt adsorption conform well with those of ML Pt adsorption, and the most stable arrangement is energetically more favorable than the corresponding ML coverage in the view of adsorption energy maximization. The behavior, i.e. the increase in adsorption energy with decrease in coverage, indicates that Pt? Pt interactions weaken those between Pt and the substrate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The density functional theory using a plane‐waves basis set and pseudopotential has been used to study the reaction pathways for ODH of propane on the V2O5(001) surface. The calculations indicated that propane adsoprtion step was initiated by the insertion of vanadyl oxygen O (1) into methylene C? H bond forming an iso‐propanol structure. This step is the rate‐determining step with an activation energy of 23.3 kcal/mol. The subsequent step involved the abstraction of the second hydrogen by O (1) site leading the formation of propene. This process had an activation energy of 22.5 kcal/mol. The elimination of surface bound water molecule at the O (1) was a barrierless process. The energy required for this process was compensated from O2 dissociative adsorption. Finally, the electronic density of state has been applied to prove the reality of the calculated results. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

19.
以商品TiO2-P25为原料,通过浸渍法负载一定量过渡金属Cu,得到一系列不同含量的CuOx/TiO2光催化剂。利用X射线衍射(XRD),X-射线光电子能谱(XPS),BET,高分辨率透射镜(HRTEM),X射线荧光光谱(XRF)和光致发光光谱(PL)等方法对催化剂进行了详细表征,在自建的光催化反应器中评价了气态水光催化还原CO2反应的活性和CH4收率。结果表明负载CuOx后的TiO2纳米材料光催化性能显著提高,其中1%CuOx/TiO2样品紫外光照72 h后,CH4生成量达到了24.86 µmol•gTi-1。同时,CuOx负载量、反应温度、反应时间等因素对CH4收率均有显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号