首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
两亲性嵌段共聚物PS-b-PMAA的合成与胶束化行为研究   总被引:7,自引:2,他引:5  
华慢  杨伟  薛乔  陈明清  刘晓亚  杨成 《化学学报》2005,63(7):631-636
利用原子转移自由基聚合法(ATRP)得到了分子量可控、分子量分布接近1.1的聚苯乙烯-b-聚甲基丙烯酸叔丁酯(PS-b-PtBMA)嵌段共聚物, 进而在酸性条件下由水解反应得到了两亲性的聚苯乙烯-b-聚甲基丙烯酸 (PS-b-PMAA)嵌段共聚物.用GPC, FTIR和1H-NMR等对产物的分子量和组成进行了表征.使PS-b-PMAA在选择性溶剂中进行自组装, 通过激光光散射和透射电子显微镜研究了影响其胶束化行为的因素与胶束形态, 并初步探讨了胶束形成的机理, 发现通过控制嵌段共聚物的链段长度之比可得到空心球形的高分子胶束.  相似文献   

2.
The aqueous solution properties of a series of polyglycidol-poly(propylene oxide)-polyglycidol (PG-PPO-PG) block copolymers were investigated by means of rheology. The copolymers are considered as analogues to the commercially available Pluronic, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), block copolymers in which the flanking PEO blocks are substituted by blocks of structurally similar PG bearing a hydroxyl group in each repeating monomer unit. In the dilute regime, the samples normally behave as Newtonian fluids. Shear thinning was observed only for the solutions of LGP65 (the copolymer of 50 wt % PG content) as well as at concentrations well above the critical micellization concentration for the rest of the copolymers. The zero shear viscosities exhibited pronounced maxima at PG content of 50 wt % and were found to decrease with increasing temperature. The concentrated solutions were investigated using oscillatory measurements. Large hystereses were observed during the temperature sweeps 15-70-15 degrees C. The evolutions of the loss and storage moduli with frequency, PG content, and temperature displayed transitions from a non-elastic to elastic behavior of the solutions. A phase diagram showing areas of predominant elasticity or fluidity was constructed.  相似文献   

3.
Undecyl and phenyl oxazolines were synthesized. They were copolymerized in different mole ratios using methyl nosylate as initiator. A series of di- and triblock copolymers with narrow molecular weight distributions as indicated by GPC were obtained. A three-armed block copolymer was also obtained by using 1,3,5-tris(bromomethyl)benzene as initiator. When the nonpolar undecyl block crystallized as a coating, the critical surface energy approached 21.0 dyn/cm, and the contact angle of water on the surface could be higher than 107°. The melting point increased as the chain length of crystallizable undecyl block increased, and the melting peak on DSC was very sharp when the length was equal to or longer than 25 monomer units. When these copolymers were coated on substrates, the work of adhesion with pressure sensitive adhesives was greatly reduced.  相似文献   

4.
Hybrid micelles from polystyrene-block-polyglycidol (PS-b-PG) copolymers with chemically cross-linked cores by titanium tetraisopropoxide (Ti(OC(3)H(7))(4)) were prepared in toluene solution. Additionally, micellization of PS-b-PG copolymers with different mass fractions of polyglycidol (x(PG)), was studied by static and dynamic light scattering as well as small-angle X-ray scattering. It was observed that copolymers with x(PG) smaller than 0.5 self-assembled in toluene into spherical core-shell micelles with hydrodynamic radii R(h) between 12 and 23 nm. On the other hand, copolymers with larger PG content formed particles with R(h) = 50-70 nm and aggregation numbers of several thousands. The presence of these aggregates in solution was attributed to the nonequilibrated form of block copolymers upon dissolving, most probably due to hydrogen bonding. In the following, spherical PS-b-PG micelles were loaded in toluene with hydrochloric acid and titanium tetraisopropoxide. Confined hydrolysis of Ti(OC(3)H(7))(4) induced by HCl in the micellar core was confirmed by small-angle X-ray scattering experiments. The subsequent condensation of the precursor with hydroxyl groups of polyglycidol chains led to covalently stabilized hybrid organic-inorganic particles. The presence of cross-linked PS-b-PG micelles was proven in two ways. First, micelles with "frozen" core showed stable hydrodynamic size in time upon dilution below critical micellization concentration while non-cross-linked PS-b-PG micelles underwent disintegration under the same conditions within several hours. Second, light scattering experiments revealed the presence of stable, swollen particles in N,N-dimethylformamide, which is a good solvent for both blocks.  相似文献   

5.
Amphiphilic block copolymers composed of poly(butyl acrylate) and poly(2-acryloyloxyethyl phosphorylcholine) have been prepared using reversible addition fragmentation transfer (RAFT) polymerisation. The conversion of the polymerisation was determined using online FT NIR spectroscopy. NMR spectroscopy was used not only to support the results obtained from FT NIR spectroscopy but also prove the formation of micelles. Due to the strong aggregation tendency of these block copolymers and the resulting difficulties concerning the molecular weight analysis test experiments were carried out replacing poly(2-acryloyloxyethyl phosphorylcholine) with poly(2-hydroxyethyl acrylate). Micelle size and the aggregation behaviour were investigated using dynamic light scattering. The sizes of the nanocontainers obtained were found to be influenced by the block length as well as the solvent leading to micelles in the range between 40 and 160 nm. The toxicity of the RAFT agent used was then analysed by cell growth inhibition tests.  相似文献   

6.
Poly(butylene/diethylene succinate) block copolymers (PBSPDGS), prepared by reactive blending of the parent homopolymers (PBS and PDGS) in the presence of Ti(OBu)4, were analyzed by 1H-NMR, TGA and DSC, in order to investigate the effects of the transesterification reactions on the molecular structure and thermal properties. 1H-NMR analysis evidenced the formation of copolymers whose degree of randomness increases with the mixing time. The thermal analysis of the melt-quenched samples showed that the melting peak, due to the crystalline phase of PBS, tends to disappear with increasing mixing time and therefore with decreasing the block length in the copolymers. As concern miscibility, a single homogeneous amorphous phase always occurred, independently on block length. Nevertheless, a phase separation, due to the tendency of the PBS blocks to crystallize, was evidenced in the copolymers with long butylene succinate sequences. The results obtained indicated that the block size had a fundamental role in determining the crystallizability and, therefore, phase behavior of the block copolymers.  相似文献   

7.
In this article, we report the first micellization study of amphiphilic copolymers composed of bacterial medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs). A series of diblock copolymers based on fixed poly(ethylene glycol) (PEG) block (5000 g mol(-1)) and a varying poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate) (PHOHHx) segment (1500-7700 g mol(-1)) have been synthesized using "click" chemistry. These copolymers self-assembled to form micelles in aqueous media. The influence of PHOHHx block molar mass on the hydrodynamic size and on the critical micelle concentration (CMC) has been studied using dynamic light scattering and fluorescence spectroscopy, respectively. With increasing PHOHHx length, narrowly distributed micelles with diameters ranging from 44 to 90 nm were obtained, with extremely low CMC (up to 0.85 mg/L). Cryogenic transmission electron microscopy (Cryo-TEM) showed that micelles took on a spherical shape and exhibited narrow polydispersity. Finally, the colloidal stability of the micelles against physiological NaCl concentration has been demonstrated, suggesting they are promising candidates for drug delivery applications.  相似文献   

8.
An amphiphilic diblock copolymer PG‐b‐PCL with well‐controlled structure and pendant hydroxyl groups along hydrophilic block was synthesized by sequential anionic ring‐opening polymerization. The micellization and drug release of PG‐b‐PCL copolymers using pyrene as a fluorescence probe were investigated for determining the influences of copolymer composition and lipase concentration on drug loading capacity and controlled release behavior. The biodegradation of PG‐b‐PCL copolymers was studied with microspheres as research samples. It has been concluded that the polar hydroxyl groups along each repeat unit of hydrophilic PG block in PG‐b‐PCL copolymer have great influences on drug encapsulation, drug release, and enzymatic degradation of micelles and microspheres.

  相似文献   


9.
FT-IR, DSC, and NMR techniques allowed the structural characterization of four copolymers formed by styrene and methacrylic units (methacrylic acid (MAA), dimethylamine ethyl methacrylate (DMAEMA), sodium methacrylate (MANa), and 1-hydroxyethyl methacrylate (HEMA). The copolymer composition was studied by Fourier transform-infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. The thermal behavior of the block copolymers was analyzed by differential scanning calorimetry (DSC). Three of the four copolymers showed two transitions caused by changes in the polymer heat capacity (ΔCp) of each block. Diffusion-ordered spectroscopy (DOSY) experiments were used to distinguish copolymer from homopolymer mixtures. Finally, the triad-level stereosequences of styrene-methacrylic copolymers were obtained using 13C NMR. The results indicate that by increasing the alkyl-substituent length in the methacrylic block, the probability of syndiotactic polymerization increases.  相似文献   

10.
This work describes a simple, versatile solid-phase peptide-synthesis (SPPS) method for preparing micelle-forming poly(ethylene oxide)-block-peptide block copolymers for drug delivery. To demonstrate its utility, this SPPS method was used to construct two series of micelle-forming block copolymers (one of constant core-composition and variable length; the other of constant core length and variable composition). The block copolymers were then used to study in detail the effect of size and composition on micellization. The various block copolymers were prepared by a combination of SPPS for the peptide block, followed by solution–phase conjugation of the peptide block with a proprionic acid derivative of poly(ethylene oxide) (PEO) to form the PEO-b-peptide block copolymer. The composition of each block component was characterized by mass spectrometry (MALDI and ES-MS). Block copolymer compositions were characterized by 1H NMR. All the block copolymers were found to form micelles as judged by transmission electron microscopy (TEM) and light scattering analysis. To demonstrate their potential as drug delivery systems, micelles prepared from one member of the PEO-b-peptide block copolymer series were physically loaded with the anticancer drug doxorubicin (DOX). Micelle static and dynamic stability were found to correlate strongly with micelle core length. In contrast, these same micellization properties appear to be a complex function of core composition, and no clear trends could be identified from among the set of compositionally varying, fixed length block copolymer micelles. We conclude that SPPS can be used to construct biocompatible block copolymers with well-defined core lengths and compositions, which in turn can be used to study and to tailor the behavior of block copolymer micelles.  相似文献   

11.
The 3‐miktoarm star‐shaped ABC copolymers of polystyrene–poly(ethylene oxide)–poly(ethoxyethyl glycidyl ether) (PS‐PEO‐PEEGE) and polystyrene–poly(ethylene oxide)–polyglycidol (PS‐PEO‐PG) with low polydispersity indices (PDI ≤ 1.12) and controlled molecular weight were synthesized by a combination of anionic polymerization with ring‐opening polymerization. The polystyryl lithium (PSLi+) was capped by EEGE firstly to form the functionalized polystyrene (PSA) with both an active ω‐hydroxyl group and an ω′‐ethoxyethyl‐protected hydroxyl group, and then the PS‐b‐PEO block copolymers, star(PS‐PEO‐PEEGE) and star(PS‐PEO‐PG) copolymers were obtained by the ring‐opening polymerization of EO and EEGE respectively via the variation of the functional end group, and then the hydrolysis of the ethoxyethyl group on the PEEGE arm. The obtained star copolymers and intermediates were characterized by 1H NMR spectroscopy and SEC.

  相似文献   


12.
Water-soluble diblock copolymers of methyl tri(ethylene glycol) vinyl ether (hydrophilic block) and isobutyl vinyl ether (hydrophobic block) of different molecular weights and composition were synthesized by living cationic polymerization. The molecular weight and comonomer composition of these copolymers were determined by GPC and 1H NMR spectroscopy, respectively. Aqueous solutions of the copolymers were characterized in terms of their micellar behavior using dynamic light scattering, aqueous GPC, and dye solubilization. All the copolymers formed aggregates with the exception of a diblock copolymer with only two hydrophobic monomer units. The micellar hydrodynamic size scaled with the 0.61 power of the number of hydrophobic units, in good agreement with a theoretical exponent of 0.73. An increase in the length of the hydrophobic block at constant hydrophilic block length or an increase in the overall polymer size at constant block length ratio both resulted in lower critical micelle concentrations (cmcs). The cloud points of 1% w/w aqueous solutions of the polymers were determined by turbidimetry. An increase in the length of the hydrophobic block at constant hydrophilic block length caused a decrease in the cloud points of the copolymers. However, an increase in the overall polymer size at constant block length ratio led to an increase in the cloud point. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Block copolymers consisting exclusively of a silicon–oxygen backbone are synthesized by sequential anionic ring‐opening polymerization of different cyclic siloxane monomers. After formation of a poly(dimethylsiloxane) (PDMS) block by butyllithium‐initiated polymerization of D3, a functional second block is generated by subsequent addition of tetramethyl tetravinyl cyclotetrasiloxane (D4V), resulting in diblock copolymers comprised a simple PDMS block and a functional poly(methylvinylsiloxane) (PMVS) block. Polymers of varying block length ratios were obtained and characterized. The vinyl groups of the second block can be easily modified with a variety of side chains using hydrosilylation chemistry to attach compounds with Si—H bond. Conversion of the hydrosilylation used for polymer modification was investigated.  相似文献   

14.
温敏性PCL-PEG-PCL水凝胶的合成、表征及蛋白药物释放   总被引:2,自引:0,他引:2  
考察了温敏性PCL-PEG-PCL水凝胶中聚乙二醇(PEG)及聚己内酯(PCL)不同嵌段组成对其溶胶-凝胶相转变温度以及亲水性药物(牛血清白蛋白, BSA)释放速率的影响. 采用开环聚合法, 以辛酸亚锡为催化剂、PEG1500/PEG1000为引发剂, 与己内酯单体发生开环共聚, 合成了一系列具有不同PEG和PCL嵌段长度的PCL-PEG-PCL型三嵌段共聚物. 通过核磁共振氢谱及凝胶渗透色谱对其组成、结构及分子量进行了表征. 共聚物的溶胶-凝胶相变温度由翻转试管法测定. 利用透射电镜、核磁共振氢谱及荧光探针技术证实了该材料在水溶液中胶束的形成. 以BSA为模型蛋白药物, 制备载药水凝胶, 利用microBCA法测定药物在释放介质中的浓度, 研究其体外释放行为. 实验结果表明, 共聚物的溶胶-凝胶相变温度与PCL及PEG嵌段长度紧密相关, 即在给定共聚物浓度情况下, 固定PEG嵌段长度而增加PCL嵌段长度, 会导致相变温度降低; 而固定PCL嵌段长度而增加PEG嵌段长度, 其相变温度相应升高. 水凝胶中蛋白药物的释放速率与疏水的PCL嵌段长度无关, 而与亲水的PEG嵌段长度密切相关, 即PEG嵌段越长, 蛋白药物释放越快.  相似文献   

15.
The anionic polymerization of ethoxyethyl glycidyl ether (EEGE) initiated by cesium alkoxide was studied. The ring-opening polymerization of EEGE in the presence of cesium alkoxide of 1-methoxy-2-ethanol does not involve any side reactions. The presence of an additional alcohol leads to a significant increase of the initiator efficiency. Aqueous solutions of poly (ethoxyethyl glycidyl ether) (PEEGE) exhibit lower critical solution temperature (LCST), and the polymer solubility in water is extremely sensitive to its MW. Two novel types of block copolymers based on PEEGE were synthesized: triblock-copolymers of ABA (A′:BA′) structure, where A is the PEEGE block, A′ polyglycidol (PG) and B the polypropylene oxide (PPO) block, and A2S (A′2S) and A4S (A′4S) heteroarm stars, where S is the polystyrene block. The synthesis of the ABA block was performed by polymerization of EEGE initiated by bi-functional PPO/Cesium alkoxide macroinitiator. The PEEGE blocks were converted into PG blocks by successful cleavage of the ethoxyethyl group. Polystyrene/PEEGE and polystyrene/PG three- and five- heteroarm star copolymers were synthesized by a coupling reaction between well-defined chain-end-functionalized polystyrenes carying dendritic benzyl bromide moieties with living anionic polymers of PEEGE with one cesium alkoxide terminal group. The coupling reaction proceeds quantitatively without any side reactions, and thus series of star-branched polymers can be systematically synthesized. Polystyrenes with two or four PG arms have been obtained after the cleavage of the protecting group. The compact structure of these multi-arm star polymers and their amphiphilic character leads to the formation of nanoparticles in aqueous solution with rather uniform size distribution and a mean diameter of 15 nm.  相似文献   

16.
In this study, synthesis of poly(epichlorohydrin-g-methyl methacrylate) graft copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization was reported. For this purpose, epichlorohydrin was polymerized by using HNO3 via cationic ring-opening mechanism. A RAFT macroinitiator (macro-RAFT agent) was obtained by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin. The graft copolymers were synthesized using macro-RAFT agent as initiator and methyl methacrylate as monomer. The synthesis of graft copolymers was conducted by changing the time of polymerization and the amount of monomer-initiator concentration that affect the RAFT polymerization. The effects of these parameters on polymerization were evaluated via various analyses. The characterization of the products was determined using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared spectroscopy, gel-permeation chromatography, thermogravimetric analysis, elemental analysis, and fractional precipitation techniques. The block lengths of the graft copolymers were calculated by using 1H-NMR spectrum. It was observed that the block length could be altered by varying the monomer and initiator concentrations.  相似文献   

17.
Gold nanoparticles of improved stability against aggregation were prepared using poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) star-block copolymers. A five-arm star-shaped macroinitiator (PEO) was utilized for the automated parallel controlled ring-opening polymerization of epsilon-caprolactone to prepare a series of PEO-b-PCL star-block copolymers with a constant PEO core linked to PCL blocks of variable length. The PEO core was swelled with KAuCl4 in N,N-dimethylformamide (DMF), and gold nanoparticles were subsequently obtained by reduction with NaBH4. Since the process was always templated by the same PEO core for all investigated polymers, the average dimension of the formed gold nanoparticles was in the same range for all star-block copolymers. In sharp contrast, the size distribution and long-term stability against aggregation of the gold nanoparticles dispersed in DMF were strongly dependent on the PCL block length, confirming the role of PCL blocks as stabilizing blocks for these nanoparticles.  相似文献   

18.
Poly(l-lactide)/poly(?-caprolactone) diblock, triblock and four-armed copolymers with the same monomer feed ratio (50/50) were synthesised by two step ring opening polymerisation of successively added ?-caprolactone and l-lactide, using isopropanol, ethylene glycol, or pentaerythritol as initiator and zinc lactate as co-initiator. The resulting copolymers were characterised by 1H NMR, DSC, SEC, and FT-IR, which confirmed the blocky characteristic of the copolymers. Solution cast films were allowed to degrade at 37 °C in the presence of proteinase K, and the degradation was monitored by gravimetry, DSC, SEC, 1H NMR and ESEM. The effects of chain structure, block length and crystallinity on the degradation are discussed. The four-armed block copolymer degrades the most rapidly, while the diblock copolymer exhibited the slowest degradation rate. The difference was related to the crystallinity depending on both the molecular structure and block length. Little compositional or molar mass changes were obtained during degradation, which strongly supports a surface erosion mechanism, in agreement with ESEM observations.  相似文献   

19.
用Cu(phen) 2 Br/1 PEBr催化引发体系合成了分子量为 50 0 0左右的溴端基聚苯乙烯 (PS Br) .以后者为大分子引发剂 ,在Cu( phen) 2 Br存在下引发甲基丙烯酸甲酯 (MMA)或丙烯酸丁酯 (BA)聚合 ,合成了二嵌段共聚物PS b PMMA和PS b PBA ,并通过GPC、IR、1H NMR及DSC等进行了表征 .实验发现 ,丙烯酸甲酯(MA)在Phen/CuCl/CCl4 催化引发下发生爆聚反应 ,仅当和异丁基乙烯基醚 (IBVE)才发生可控的自由基共聚合反应 .当MA和IBVE的投料摩尔比为 1∶1时 ,所得共聚物中两种单体链节的组成比为 1∶1 7左右 .  相似文献   

20.
Polypropylene-block-poly(methyl methacrylate) (PP-b-PMMA) and Polypropylene-block-poly(N-isopropylacryramide) (PP-b-PNIPAAm) block copolymers were successfully synthesized by radical polymerizations of MMA or NIPAAm with polypropylene (PP) macroinitiators. Polypropylene macroinitiators were prepared by a series of end functionalization of pyrolysis PP via hydroalumination, oxidation and esterification reactions. The PP macroinitiators thus obtained could initiate radical polymerizations of MMA or NIPAAm by using transition metal catalyst systems, and 1H NMR analysis and gel permeation chromatography measurement confirmed the formation of PP-b-PMMA and PP-b-PNIPAAm block copolymers. In addition, the length of the incorporated PMMA or PNIPAAm segments in these block copolymers was controllable by the feed ratio between the monomer and the PP macroinitiator, and their molecular weights were estimated to be 35700 and 68700 (PMMA) and 1760 and 13300 (PNIPAAm), respectively. Transmission electron microscopy of the polymers obtained by NIPAAm polymerization revealed specific morphological features that reflected the difference of PNIPAAm segment length. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号