首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reproducibly smooth amino-functionalized surfaces were obtained by deposition of aminopropyltrimethoxysilane (APTMS) at the vapor/solid interface. Characteristics of these amino-functionalized surfaces were evaluated based on atomic force microscopy, water contact angle measurement and X-ray photoelectron spectroscopy. The results showed that APTMS modified surfaces are very homogeneous and the chemical reactivity of modified surfaces can be ensured with high free amino content. Furthermore, for the purpose of tailoring the wettability of silicon surface, dual self-assembled films were achieved by performing reaction between amino-functionalized surface and n-alkanoic acids with different chain length. The wettability of the self-assembled films can be adjusted with altering the hydrocarbon chain length of alkanoic acids. Moreover, cooperation of dual self-assembled films with surface roughening, superhydrophobic surfaces with CA larger than 153 degrees were obtained. Thus, the wettability of modified surfaces can be altered greatly with changing hydrocarbon chain length of self-assembled films.  相似文献   

3.
By alternate UV and visible light irradiation, reversible topographical changes were observed on a newly synthesized diarylethene microcrystalline surface between the rough crystalline surface of an open-ring isomer and flat eutectic surfaces. The contact angle changes of a water droplet between 80° and 150° and peak intensities changes of the open-ring isomer in XRD patterns within 2 h of repeating cycle were observed. The results indicated that reversibly photogenerated rod-shaped crystals on the surface were produced based on the lattice of the open-ring isomer crystals in the subphase.  相似文献   

4.
5.
Wetting studies regarding amphiphilic molecules and adsorption properties on highly water repellent solid surfaces play key roles in research and technology, with increasing interest both in fundamental and application fields. Nevertheless the wetting properties of aqueous surfactant solutions, non aqueous liquids or immiscible phases on superhydrophobic (SH) solid surfaces have been so far rarely investigated. In this work the authors give an overview on this topic reviewing the literature available together with preliminary results concerning the influence of the distribution properties of surfactants between two immiscible phases. Transition between wetting states can be also considered a possible development of these studies based on switching mechanisms.  相似文献   

6.
A typical superhydrophobic (ultrahydrophobic) surface can repel water droplets from wetting itself, and the contact angle of a water droplet resting on a superhydrophobic surface is greater than 150°, which means extremely low wettability is achievable on superhydrophobic surfaces. Many superhydrophobic surfaces (both manmade and natural) normally exhibit micro- or nanosized roughness as well as hierarchical structure, which somehow can influence the surface's water repellence. As the research into superhydrophobic surfaces goes deeper and wider, it is becoming more important to both academic fields and industrial applications. In this work, the most recent progress in preparing manmade superhydrophobic surfaces through a variety of methodologies, particularly within the past several years, and the fundamental theories of wetting phenomena related to superhydrophobic surfaces are reviewed. We also discuss the perspective of natural superhydrophobic surfaces utilized as mimicking models. The discussion focuses on how the superhydrophobic property is promoted on solid surfaces and emphasizes the effect of surface roughness and structure in particular. This review aims to enable researchers to perceive the inner principles of wetting phenomena and employ suitable methods for creation and modification of superhydrophobic surfaces.  相似文献   

7.
The ability to form molded or patterned metal-containing ceramics with tunable properties is desirable for many applications. In this paper we describe the evolution of a ceramic from a metal-containing polymer in which the variation of pyrolysis conditions facilitates control of ceramic structure and composition, influencing magnetic and mechanical properties. We have found that pyrolysis under nitrogen of a well-characterized cross-linked polyferrocenylsilane network derived from the ring-opening polymerization (ROP) of a spirocyclic [1]ferrocenophane precursor gives shaped macroscopic magnetic ceramics consisting of alpha-Fe nanoparticles embedded in a SiC/C/Si(3)N(4) matrix in greater than 90% yield up to 1000 degrees C. Variation of the pyrolysis temperature and time permitted control over the nucleation and growth of alpha-Fe particles, which ranged in size from around 15 to 700 A, and the crystallization of the surrounding matrix. The ceramics contained smaller alpha-Fe particles when prepared at temperatures lower than 900 degrees C and displayed superparamagnetic behavior, whereas the materials prepared at 1000 degrees C contained larger alpha-Fe particles and were ferromagnetic. This flexibility may be useful for particular materials applications. In addition, the composition of the ceramic was altered by changing the pyrolysis atmosphere to argon, which yielded ceramics that contain Fe(3)Si(5). The ceramics have been characterized by a combination of physical techniques, including powder X-ray diffraction, TEM, reflectance UV-vis/near-IR spectroscopy, elemental analysis, XPS, SQUID magnetometry, M?ssbauer spectroscopy, nanoindentation, and SEM. Micromolding of the spirocyclic [1]ferrocenophane precursor within soft lithographically patterned channels housed inside silicon wafers followed by thermal ROP and pyrolysis enabled the formation of predetermined micron scale designs of the magnetic ceramic.  相似文献   

8.
The stability of wetting states, namely the Cassie state (partial wetting) and the Wenzel state (complete wetting) of surfaces with protrusions, is determined by comparing the total free energy of a liquid drop in terms of their apparent contact angles for different protrusion features. It is found that when the area fraction of the topographical features and the intrinsic contact angle for a flat surface are large, the Cassie state is favored, but it can be either the metastable or stable state. It is shown that the transition from the Cassie state to the Wenzel state requires the application of a pressure to the meniscus between the surface protrusions. The critical transition pressure increases not only with increasing area fraction and intrinsic contact angle, but also with decreasing protrusion size. During the transition, a high-pressure gas can be trapped around the protrusions that can cause the Cassie state to be recovered after the release of the applied pressure. The analysis shows that a droplet can 'hang' upside-down when the protrusion size is very small; namely, the protrusions can pin the meniscus. These results are discussed relative to the advancing and receding contact angle.  相似文献   

9.
10.
Electric field induced switching behaviors of a series of low-density omega-carboxyalkyl modified H-Si(111) and the mixed omega-carboxyalkyl/alkyl covered H-Si(111) have been simulated by using molecular dynamics (MD) simulation techniques. The external electric fields may drive surface-confined molecules to reversibly change conformations between the all-trans (switching "on") and the mixed trans-gauche (switching "off") states. Such surfaces switch wettabilities between the hydrophilic state and the moderately hydrophobic state. It has been found in broad ranges of intensities of applied electric fields, -2.0 x 10(9) V/m < or = E(down) < or = 0 and 1.8 x 10(9) V/m < or = E(up) < or = 7.3 x 10(9) V/m, both the low-density (11.1%-33.3%) omega-carboxyalkyl and the mixed omega-carboxyalkyl/alkyl (in mole fraction of 0.4 < or = N(carboxyalkyl) : N(alkyl) < or = 3.0) monolayers covering H-Si(111) exhibit conformational switching in the aqueous medium. The critical intensity of the electric field, E(up) = 1.8 x 10(9) V/m, which is required to trigger the switches is observed by our MD simulations and further rationalized by a thermodynamical model. Some important factors in the control of switching performances, such as the steric hindrances, the formation of the electric double layer at the monolayer/electrolyte solution interface, the hydration effects of carboxylate anions, the components of surrounding electrolyte solutions, as well as the rigidity of surface-confined chains are elucidated. The lower ionic strength and additions of acetonitrile molecules in the surrounding aqueous solution can reduce the value of critical intensity of the electric field and hence facilitate the realization of switching. Some practical considerations in construction and optimum design of switching surfaces are also suggested.  相似文献   

11.
In this work the mechanism of (3-aminopropyl)triethoxysilane (APTES) interaction with silicon surfaces is investigated at the molecular level. We studied the influence of experimental parameters such as time, temperature, and concentration on the quality of the APTES layer in terms of chemical properties, morphology, and stability in aqueous medium. This was achieved using a highly sensitive IR mode recently developed, grazing angle attenuated total reflection (GA-ATR). This technique provides structural information on the formed APTES layer. The topography of this layer was investigated by atomic force microscopy in aqueous medium. The hydrophilicity was also studied using contact angle measurement. Combining these techniques enables discussion of the mechanism of silane grafting. Considerable differences were observed depending on the reaction temperature, room temperature or 90 °C. The data suggest the presence of two adsorption sites with different affinities on the oxidized silicon layer. This also allows the optimal parameters to be established to obtain an ordered and stable silane layer. The adsorption of proteins on the APTES layer was achieved and monitored using in situ quartz crystal microbalance with dissipation monitoring and ex situ GA-ATR analyses.  相似文献   

12.
A systematic study of the etching behavior of one-dimensional (1-D) Si nanowires (SiNWs) in various HF and NH4F etching solutions is reported. The concentration and pH dependences of the etching time (which is inverse to the "stability") of the SiNWs in these solutions were investigated. A V-shaped bimodal etching curve was observed for HF solutions with concentrations of 0.5-40%. Specifically, SiNWs exhibit high stability in both low (0.5%) and high (40%) concentrations of HF solution, with the lowest stability (i.e., fastest etching rate) occurring at 2% (1 M) HF solution. With NH4F, the time needed to totally etch away the SiNWs sample decreases with increasing concentration (from 1-40%). The opposite is true when the pH of the NH4F solution was maintained at 14. These surprising results were rationalized in terms of "passivation" of the SiNW surfaces by HF or related molecules via hydrogen bonding for Si-H-terminated surfaces in HF solutions (with low pH values) and by NH4(+) ions via ionic bonding for Si-O(-)-terminated surfaces in NH4F solutions (with high pH values), respectively. Furthermore, it was found that SiNWs are stable only in relatively narrow pH ranges in these solutions. When SiNWs are etched with HF, the stability range is pH = 1-2 where the surface moieties are Si-H(x) species (x = 1-3). When SiNWs are etched with NH4F, the stability range is pH = 12-14 where the surface moieties are mainly Si-(O-)x species (x = 1-3). These rationales were confirmed by attenuated total reflection Fourier transform infrared spectroscopy measurements, which showed that, while etching SiNWs with HF gave rise to Si-H(x) surface species, no Si-H(x) species were observed when SiNWs were etched with NH4F. The latter finding is at odds with the corresponding results reported for the two-dimensional (2-D) Si wafers where etching with either HF or NH4F produces Si-H(x) species on the surface. This difference suggests either that the etching mechanisms for NH4F versus HF are different for SiNWs or, more likely, that the Si-H(x) surface species produced in NH4F solutions are so unstable that they are hydrolyzed readily at pH > 4. The similarities and differences of the etching behaviors and the resulting surface speciations between the 1-D SiNWs and the 2-D Si wafers suggest that the nanoscale structures as well as the low dimensionality of SiNWs may have contributed to the rapid hydrolysis of the surface Si-H(x) species in NH4F solutions, especially at high pH values.  相似文献   

13.
The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed.  相似文献   

14.
The isotherms and differential heats of water vapor adsorption on kaolinite modified with poly(hexamethylene guanidine) hydrochloride are measured. Modification efficiency is, to a high extent, determined by the compliance (complementarity) between the structure of the modifying agent and the chemical nature of the kaolinite surface. It is shown that the individual stages of the interaction between water and the modified sorbent comprise sorption of four or five molecules on triads of amino groups of the modifying layer, conformational changes in the layer, the formation of additional adsorption sites, partial rupture of the modifying layer, and the dispersion of kaolinite particles induced by adsorbed water. Alternative opinions are presented on the reason for the appearance of the additional adsorption sites. It is proven that not only the adsorbate, but also the adsorbent, undergoes efficient changes during the adsorption.  相似文献   

15.
The present work aims to contribute to the understanding at a molecular level of the origin of the hydrophobic nature of surfaces exhibiting roughness at the nanometer scale. Graphite-based smooth and model surfaces whose roughness dimension stretches from a few angstroms to a few nanometers were used in order to generate Cassie and Wenzel wetting states of water. The corresponding solid-liquid surface free energies were computed by means of molecular dynamics simulations. The solid-liquid surface free energy of water-smooth graphite was found to be -12.7 ± 3.3 mJ/m(2), which is in reasonable agreement with a value estimated from experiments and fully consistent with the features of the employed model. All the rugged surfaces yielded higher surface free energy. In both Cassie and Wenzel states, the maximum variation of the surface free energy with respect to the smooth surface was observed to represent up to 50% of the water model surface tension. The solid-liquid surface free energy of Cassie states could be well predicted from the Cassie-Baxter equation where the surface free energies replace contact angles. The origin of the hydrophobic nature of surfaces yielding Cassie states was therefore found to be the reduction of the number of interactions between water and the solid surface where atomic defects were implemented. Wenzel's theory was found to fail to predict even qualitatively the variation of the solid-liquid surface free energy with respect to the roughness pattern. While graphite was found to be slightly hydrophilic, Wenzel states were found to be dominated by an unfavorable effect that overcame the favorable enthalpic effect induced by the implementation of roughness. From the quantitative point of view, the solid-liquid surface free energy of Wenzel states was found to vary linearly with the roughness contour length.  相似文献   

16.
The TGF-β superfamily signaling pathway regulates many important biological processes, including cell growth, differentiation and embryonic pattern formation. Smad1, a member of this signaling pathway that functions downstream of serine/threonine kinase receptors, has ability to interact with carboxyl terminus of Hsc70-interacting protein (CHIP), which is an E3 ubiquitin ligase in other cases. It has been reported that Smurf1, a member of the Hect family E3 ubiquitin ligases, can target Smad1 to 26S proteasome for degradation. In this paper, we studied the interaction of Smad1 and CHIP by combination of surface plasmon resonance and supported monolayer approach. The specific binding of Smad1 to CHIP indicates that the degradation of Smad1 may also be mediated by CHIP, and CHIP may play an essential role in the TGF-β signaling pathway.  相似文献   

17.
A durable superhydrophobic surface with low water sliding angle (SA) and high water contact angle (CA) was obtained by electrospinning poly (vinylidene fluoride) (PVDF) which was mixed with epoxy-siloxane modified SiO(2) nanoparticles. To increase the roughness, modified SiO(2) nanoparticles were introduced into PVDF precursor solution. Then in the electrospinning process, nano-sized SiO(2) particles irregularly inlayed (it could also be regard as self-assembly) in the surface of the micro-sized PVDF mini-islands so as to form a dual-scale structure. This structure was responsible for the superhydrophobicity and self-cleaning property. In addition, epoxy-siloxane copolymer was used to modify the surface of SiO(2) nanoparticles so that the SiO(2) nanoparticles could stick to the surface of the micro-sized PVDF mini-islands. Through the underwater immersion test, the SiO(2) nanoparticles cannot be separated from PVDF easily so as to achieve the effect of durability. We chiefly explore the surface wettability and the relationship between the mass ratio of modified SiO(2) nanoparticles/PVDF and the CA, SA of electrospun mat. As the content of modified SiO(2) nanoparticles increased, the value of CA increased, ranging from 145.6° to 161.2°, and the water SA decreased to 2.17°, apparently indicating that the membrane we fabricated has a perfect effect of superhydrophobicity.  相似文献   

18.
We report results of molecular dynamics (MD) simulations of the complexes of p-sulfonatocalix[4]arene with linear alcohols from ethanol to heptanol in water at 25 degrees C. We show that these complexes are of the inclusion type and are governed by van der Waals interactions between the calixarene cavity and the inserted alkyl chain of the alcohol. We establish a correlation between the experimental Delta(r)H degrees values and the number of atoms inserted into the calixarene cavity. We also focus on the desolvation of the host and guest to establish the importance, at the enthalpic level, of the formation of hydrogen bond bridges between the calixarene and the alcohol molecule. The fact that methanol is not complexed by p-sulfonatocalix[4]arene is explained by calculating the cost of the desolvation of the guest upon complexation. We complete this study by modeling the complexes formed with 1,4-butanediol and 1,5-pentanediol. To explain the difference between the thermodynamic properties for the binding of 1,4-butanediol and butanol, we examine the insertion rate and the solvation of each hydroxy group. We show a specific behavior of one of the two hydroxy groups at the structural and energetic levels.  相似文献   

19.
We performed all-atom molecular dynamics simulations to study the friction between surfaces covered with two phosphorylcholine self-assembled monolayers (PC-SAM) under shear. PC-SAM surfaces with a sqrt7 X sqrt7R19 degrees lattice structure and a parallel arrangement of the head groups were used as model zwitterionic surfaces. They provide a full representation of the zwitterionic nature of phospholipid surfaces, which are believed to play an important role in the lubrication of biological joints such as knees and hips. The surfaces were immersed in aqueous solutions and kept in contact with two regions of bulk water. Sodium chloride and potassium chloride solutions at various concentrations were employed to study the effects of the presence of ions on friction. The results show a strong relationship between surface hydration and friction. Higher ionic concentrations or ions with shorter Debye lengths cause a larger disruption to the hydration around the zwitterionic surfaces, leading to larger friction forces. In addition, the results show that under nanoscale confinement, the friction coefficients of PC-SAM surfaces in pure water are directly proportional to both shear velocity and surface separation distance. These results are comparable to previously published experimental studies.  相似文献   

20.
孙静  高濂 《化学学报》2001,59(5):780-783
利用原子显微镜研究NaCl介质浓度及体pH值对氧化铝表面作用力的影响规律。发现较低的盐浓度下,相互作用表示为长程排斥力,双电层厚度的实际值与理论值较好地吻合,随NaCl介质浓度的提高,双电层压缩长程斥力减弱,测定了pHMH4.0变化到9.67的作用力曲线,发现当pH等于7/90时,两表面的相互作用表现为吸引力,通过恒电荷、恒电位拟合,发现氧化铝的等电点在pH8.2处,与Zeta电位的测定结果相一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号