首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetics of peptide-membrane association have been studied previously using stopped-flow tryptophan fluorescence; however, such experiments do not directly report the coil-to-helix transition process, which is a hallmark of peptide-membrane interaction. Herein, we report a new method for directly assessing the kinetics of the helix formation accompanied by the peptide-membrane association. This method is based on the technique of fluorescence resonance energy transfer (FRET) and an amino acid FRET pair, p-cyano-L-phenylalanine and tryptophan. To demonstrate the utility of this method, we have studied the membrane-mediated helix folding dynamics of a mutant of magainin 2, an antibiotic peptide found in the skin of the African clawed frog, Xenopus laevis. Our results indicate that the coil-to-helix transition occurs during the binding of the peptide to the lipid vesicle (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], 3:1, wt/wt) but prior to the full insertion of the peptide into the hydrophobic region of the lipid bilayers.  相似文献   

2.
A detailed knowledge of the interaction between bacterial membranes and antibiotics provides important information to prevent high levels of antibiotic resistance exhibited by pathogenic strains. We investigated by energy dispersive X-ray diffraction (EDXD) the structure ordering of dioleoyl-phosphatidylcholine (DOPC) lipid interacting with antimicrobial peptide alamethicin, varying the lipid/peptide (L/P) molar ratio under two different hydration levels.In conditions of full hydration (100%) we found that the bilayer thickness is constant between L/P = 20 and L/P = 80 indicating that in this range, the system has reached the threshold value for the channel formation, while at the relative hydration of 45% a linear decrease of the bilayer thickness as function of L/P was revealed. The kinetic study of the complex alamethicin–DOPC at different L/P values, shows that the Bragg peak energy variation versus the hydration time has a biexponential behavior characterized by two different time constants.  相似文献   

3.
The kinetics of the interaction between Gemcitabine (a new anticancer drug) and phospholipid membrane models was investigated. This kind of study is of particular importance both in hypothesizing the interaction of Gemcitabine with mammalian cell membranes and in evaluating the potentiality of liposomes as a Gemcitabine delivery system. Unilamellar (LUV) and multilamellar (MLV) membrane models were made up of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidic acid sodium salt (DMPA), or a DMPC-DMPA mixture (1:1 molar ratio). Gemcitabine-phospholipid vesicle interaction was studied by differential scanning calorimetry (DSC) measurements performed at different time intervals. The findings showed slower permeation kinetics of Gemcitabine through MLV than LUV which, at the same lipid/water ratio, are characterized by a larger lipid surface in contact with the drug aqueous solution. Another interesting difference between LUV and MLV is the onset of a transient two-peak structure during the DSC scans of MLVs. The effect is due to the unequal distribution of the drug between the outer and inner bilayers of the multilamellar vesicles during the permeation kinetics. At equilibrium the two-peak structure merges into a unique peak. This finding may provide useful information about the lipid bilayer permeability in model membranes.  相似文献   

4.
The aqueous solution of riboflavin and cucurbit[7]uril complex has been studied based on fluorescence and 1H NMR spectroscopic results. Upon addition of cucurbit[7]uril, the fluorescence intensity of riboflavin was quenched and a slight red shift was observed for the maximum emission peak. These results indicated that the cucurbit[7]uril–riboflavin complex was formed at a 1:1 mole ratio. The temperature-dependent inclusion constants were calculated, from which ΔH and ΔS values were calculated. Meanwhile, rationale of the interaction mechanism was also discussed based on 1H NMR results. The solid inclusion complex was prepared from co-evaporation method and characterised by differential thermal analysis and fluorescence lifetime analysis methods. The experimental results indicated that riboflavin and cucurbit[7]uril formed stable host–guest inclusion complex in both solution and solid states.  相似文献   

5.
The aggregation properties of an antibiotic membrane-active peptide alamethicin at the air-water interface have been studied using interfacial rheology and fluorescence microscopy techniques. Fluorescence microscopy of alamethicin monolayers revealed a coexistence of liquid expanded (LE) and solid phases at the surface concentrations studied. Interfacial oscillatory shear measurements on alamethicin monolayers indicate that its viscoelastic properties are determined by the area fraction of the solid domains. The role of zwitterionic phospholipids dioleoylphosphatidyl choline (DOPC) and dioleoylphosphatidyl ethanolamine (DOPE) on the peptide aggregation behavior was also investigated. Fluorescence microscopy of alamethicin/phospholipid monolayers revealed an intermediate phase (I) in addition to the solid and LE phase. In mixed monolayers of phospholipid (L)/alamethicin (P), with increase in L/P, the monolayer transforms from a viscoelastic to a viscous fluid with the increase in area fraction of the intermediate phase. Further, a homogeneous mixing of alamethicin/lipid molecules is observed at L/P > 4. Our studies also confirm that the viscoelasticity of alamethicin/phospholipid monolayers is closely related to the alamethicin/phospholipid interactions at the air-water interface.  相似文献   

6.
Monolayers of the thiolipopeptide NH(2)-Cys-Ala-Ser-Ala-Ala-Ser-Ser-Ala-Pro-Ser-Ser-(Myr)Lys(Myr)-OH (III) were formed on gold surfaces by self-assembly, mixed with a lateral spacer of the same peptide composition, NH(2)-Cys-Ala-Ser-Ala-Ala-Ser-Ser-Ala-Pro-Ser-Ser-Lys-OH (I). Different mixing ratios were employed ranging from 0.1 to 1, corresponding to 10-100% thiolipopeptide. These self-assembled monolayers (SAMs) were then exposed to a suspension of liposomes with the aim of forming lipid bilayers as a function of the mixing ratio. A clear optimum with respect to homogeneity and electrical properties of the membranes was obtained in the middle region (0.5) of mixing ratio, as revealed by surface plasmon resonance spectroscopy, impedance spectroscopy, and fluorescence microscopy. The combination of these methods was shown to be a powerful tool, although a true lipid bilayer was not obtained. Instead, vesicle adsorption was shown to be the predominant process, and FRAP (fluorescence recovery after photobleaching) measurements showed that the films were not fluid on the micrometer length scale.  相似文献   

7.
The formation of lipid bilayers, lifted from the solid substrate by layer-by-layer polyion cushions, on self-assembled monolayers (SAMs) on gold was investigated by surface plasmon resonance (SPR) and fluorescence recovery after photobleaching (FRAP). The polyions poly(diallyldimethylammonium chloride) (PDDA) and polystyrene sulfonate (PSS) sodium salt were used for the layer-by-layer polyion macromolecular assembly. The cushion was formed by electrostatic interaction of PDDA/PSS/PDDA layers with a negatively charged surface of an SAM of 11-mercaptoundecanoic acid (MUA) on gold. The lipid bilayer membranes were deposited by vesicle fusion with different compositions of SOPS (an anionic lipid, 1-stearoyl-2-oleoyl-phosphatidylserine) and POPC (a zwitterionic lipid, 1-palmitoyl-2-oleoylphosphatidylcholine). In the case of pure SOPS and for lipid mixtures with a POPC composition up to 25%, single bilayers were deposited. FRAP experiments showed that single bilayers supported on PDDA/PSS/PDDA/MUA were mobile at room temperature, with lateral coefficients of approximately (1.2–2.1)×10−9 cm2/s. The kinetics of the addition of the ion-channel-forming peptide protegrin-1 to the supported bilayers was detected by SPR. A two-step interaction was observed, similar to the association behavior of protegrin-1 with bilayers supported on PDDA/MUA. The results are similar to that of supported lipid bilayers without a layer-by-layer cushion. The model membrane system in this work is a potential biosensor for mimicking the natural activities of biomolecules and is a possible tool to investigate the fundamental properties of biomembranes.  相似文献   

8.
The membrane binding and model lipid raft interaction of synthetic peptides derived from the caveolin scaffolding domain (CSD) of the protein caveolin-1 have been investigated. CSD peptides bind preferentially to liquid-disordered domains in model lipid bilayers composed of cholesterol and an equimolar ratio of dioleoylphosphatidylcholine (DOPC) and brain sphingomyelin. Three caveolin-1 peptides were studied: the scaffolding domain (residues 83-101), a water-insoluble construct containing residues 89-101, and a water-soluble construct containing residues 89-101. Confocal and fluorescence microscopy investigation shows that the caveolin-1 peptides bind to the more fluid cholesterol-poor phase. The binding of the water-soluble peptide to lipid bilayers was measured using fluorescence correlation spectroscopy (FCS). We measured molar partition coefficients of 10(4) M(-1) between the soluble peptide and phase-separated lipid bilayers and 10(3) M(-1) between the soluble peptide and bilayers with a single liquid phase. Partial phase diagrams for our phase-separating lipid mixture with added caveolin-1 peptides were measured using fluorescence microscopy. The water-soluble peptide did not change the phase morphology or the miscibility transition in giant unilamellar vesicles (GUVs); however, the water-insoluble and full-length CSD peptides lowered the liquid-liquid melting temperature.  相似文献   

9.
Steady‐state and time‐resolved fluorescence spectroscopy have been used for the study of the incorporation kinetics of hypericin (Hyp) into low‐density lipoproteins (LDL). Biphasic kinetics of Hyp association with LDL was observed when solutions of Hyp and LDL were mixed at various concentration ratios. The rapid phase of Hyp incorporation is completed within seconds, while the slow phase lasts several minutes. The relative contributions of the individual phases show that a higher amount of Hyp molecules (65%) are incorporated into LDL in the second phase. The kinetics of the incorporation of Hyp into LDL particles preloaded with Hyp (Hyp/LDL = 25:1) was also investigated. The decreased intensity of Hyp fluorescence is a sign of the formation of Hyp aggregates after penetration of additional Hyp molecules into Hyp/LDL = 25:1 complex. The time dependence of Hyp fluorescence was measured after mixing the complex Hyp/LDL = 200:1 with appropriate amounts of free LDL molecules. For each final Hyp/LDL ratio, an increase in the intensity and lifetime of Hyp fluorescence was observed, suggesting a monomerization of Hyp aggregates. The half‐time of Hyp transfer from Hyp/LDL complex to LDL particles is similar to the half‐time of the slow phase of Hyp incorporation into free LDL particles.  相似文献   

10.
By the study of absorption and fluorescence spectra and the lifetime of fluorescence at room and low temperatures of 2,6-dimethyl naphthalene dicarboxylate (DMN) in different concentrations of sulfuric acid, different interactions between molecules of DMN and sulfuric acid have been observed. These interactions have been revealed by the absorption spectra of charge transfer complex in the ground state, emission of exciplex, absorption spectra of hydrogen bonding interaction, absorption and emission spectra after proton transfer and different lifetimes before and after protonation. The interaction mechanism of DMN and sulfuric acid through first the CT complex and exciplex then hydrogen bonding and finally proton transfer is proposed.  相似文献   

11.
The interaction of Chi a with zeaxanthin (Zea), which is an analogue of lutein, has been studied in soya bean lecithin liposomes using the fluorescence of Chi as monitor. The fluorescence emission spectrum at 4.2 K of Chi a showed characteristic changes in the presence of Zea: the emission maximum shifted from 688 nm to 680 nm, and a peak at 731 nm appeared. The fluorescence decay kinetics of Chi a alone could be described by the sum of two exponential components (T1,≅0.8 ns, T2≅2.5 ns). In the presence of Zea a component with a long lifetime, T≅5 ns, appeared with a large relative amplitude (40%). This indicated the formation of a Chl a /Zea complex, in which Chl a /Chl a interaction is negligible, presumably because of strong interaction between Chl a and Zea. The fluorescence anisotropy decay kinetics supported the hypothesis of the formation of a large Chl a containing complex in the presence of Zea. A rotational correlation time, φ≅14 ns at 4°C and φ≅21 ns at 30°C, was found, which is distinctly larger than for samples containing Chl a only. We interpret these results as further evidence for a strong interaction between Chl a and Zea in the hydrophobic environment of the lecithin liposomes. This interaction may also occur in the Chl-proteins of the Chi alb light-harvesting complex of plant photosynthesis.  相似文献   

12.
The interaction kinetics of polyamidoamine (PAMAM) dendrimers with supported lipid bilayers of 1,2-sn-glycero-dimyristoylphosphocholine prepared by the vesicle deposition has been probed by optical waveguide lightmode spectroscopy and atomic force microscopy (AFM). In particular, the influence of PAMAM dendrimer generation (G2, G4, and G6) and concentration (1 to 100 nM) on the levels of adsorption and lipid bilayer removal have been determined as a function of time; hence interaction kinetics and mechanisms have been further elucidated. Dendrimer interaction kinetics with the lipid bilayer are concentration dependent in a complex manner, with net bilayer removal at 1 and 100 nM and net adsorption at 10 nM; these effects are irrespective of dendrimer generation. The pseudo first order rate constant for bilayer removal (at 1 and 100 nM) follows the order G6 > G4 > G2. In contrast, the pseudo first order rate constant for adsorption at 10 nM follows the order G2 > G4 > G6. AFM has confirmed expansion of lipid bilayer defects, hole formation, and adsorption to the bilayer or bilayer defects, and their concentration and generation dependence. These findings have implications when designing dendrimers for specific biopharmaceutical activities, e.g., as drugs, drug delivery vehicles, transfection agents, or antimicrobials.  相似文献   

13.
Hypelcin A, an α-aminoisobutyric acid-containing antibiotic peptide inducing fusion of egg yolk-l-α-phosphatidylcholine (egg PC) small unilamellar vesicles (SUVs), was investigated by lipid-mixing assay based on resonanceenergy transfer between fluorescent probes, electron microscopy, light scattering, and1H-nuclear magnetic-resonance spectroscopy. At a high peptide-to-lipid ratio of approximately 1:5, the peptide fuses several SUVs of 20–30 nm in diameter into a 40–100 nm vesicle. Under mild conditions where the permeability enhancement (leakage of a trapped fluorescent dye, calcein) of lipid bilayers are observed (peptide to lipid ratios around 1/100), the fusion of the SUVs also occurs, although the fusion requires a somewhat larger amount of the peptide than the leakage does. Furthermore, at higher lipid concentrations, where the aggregation step is sufficiently rapid, the fusion rate is determined by the amount of the membrane bound peptide per lipid molecule, as is the leakage rate. In contrast, for egg PC large unilamellar vesicles (110 nm), hypelcin A induces the leakage, but not the fusion. We conclude that the leakage is not due to the fusion.  相似文献   

14.
Steady-state absorption and emission spectroscopy and time-resolved fluorescence measurements were employed in the study of meso-tetrakis(4-N-methylpyridinium)porphine (TMPyP) interactions with half-generation carboxyl-terminated poly(amidoamine) (PAMAM) dendrimers in water. TMPyP experiences a less polar environment and a strong fluorescence quenching effect upon dendrimer association. The tertiary amine functional groups in PAMAM dendrimers are likely to be responsible for the fluorescence quenching of TMPyP through an electron-transfer mechanism. The Stern-Volmer plots achieve a plateau at high dendrimer concentrations that was attributed to full porphyrin-dendrimer association, and an average fluorescence quantum yield of 15-20% relative to aqueous TMPyP was estimated. The association constant for the 1:1 complex with generation 2.5 at dendrimer-porphyrin ratio D/P = 1 is 5.75 x 10(7) M(-1), indicating a strong binding affinity. The dissociation of the complex with increasing ionic strength reinforces the role of electrostatic forces in porphyrin-dendrimer association. Comparison of Stern-Volmer plots obtained from quantum yields or lifetimes showed the importance of a static effect in these systems. The fluorescence decays of the porphyrin-dendrimer complex were fitted with a dispersed kinetics model. At intermediate dendrimer-porphyrin ratios (D/P approximately 1), diffusional quenching processes between free porphyrin and dendrimer were modeled with the Sano-Tachiya pair survival probability equation. Transient diffusional effects were dismissed as a possible explanation for the static effect detected.  相似文献   

15.
A marine green alga, Codium fragile, exhibits a characteristic in vivo absorption band of a specific keto-carotenoid, siphonaxanthin, at 535 nm. We examined the ultrafast fluorescence kinetics by direct excitation of this band after purification of light-harvesting complex II. On the basis of a high fluorescence anisotropy (0.39) up to 1 ps and a very short lifetime (60 fs), we identified the 535 nm band as a new electronically excited state (Sx) located between the S1 and S2 states. Excited-state dynamics of the Sx state were further discussed in relation to the energy transfer processes in the complexes.  相似文献   

16.
Abstract— The fluorescence properties of a covalently-linked porphyrin-quinone complex and its zinc derivative were studied in a variety of organic solvents. The kinetics of fluorescence decay for both the quinone and hydroquinone oxidation states were measured in acetonitrile, dichloromethane, dimethyl-formamide, and pentane. The fluorescence yield and kinetics of decay at room temperature were little affected in the porphyrin or zinc porphyrin complexes when the attached quinone was reduced. However, for these complexes the fluorescence yield and lifetimes were both substantially decreased in acetonitrile and dichloromethane when the quinone was in its oxidized state. These latter decay kinetics were not explainable by a process having a single exponential decay. On the other hand, little fluorescence quenching or lifetime shortening was observed in dimethylformamide or pentane, indicating unique solvent dependencies for the quenching process. Evidence was obtained for photoproduced charge separation from EPR measurements on the covalently-linked zinc porphyrin-quinone complex. The EPR data showed equivalent concentrations of a Zn porphyrin cation radical and a benzoquinone anion radical in acetonitrile or dichloromethane at both room temperature and 77 K. The charge separated state rapidly decayed at room temperature (in sub-millisecond times) but was quite stable at 77 K. It is concluded that light-induced charge separation in acetonitrile and dichloromethane at room temperature may occur from the excited singlet state with a high quantum efficiency. A photoproduced charge separated state also occurred when the covalently-linked complexes were incorporated into egg yolk phosphatidylcholine liposomes. The quantum yield for radical formation in this latter system was 0.1 and the lifetimes of the radical species formed were many minutes.  相似文献   

17.
We studied the interaction of the alpha-helical peptide acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)) with tethered bilayer lipid membranes (tBLM) and lipid monolayers formed at an air-water interface. The interaction of L(24) with tBLM resulted in adsorption of the peptide to the surface of the bilayer, characterized by a binding constant K(c)=2.4+/-0.6 microM(-1). The peptide L(24) an induced decrease of the elasticity modulus of the tBLM in a direction perpendicular to the membrane surface, E(radial). The decrease of E(radial) with increasing peptide concentration can be connected with a disordering effect of the peptide to the tBLM structure. The pure peptide formed a stable monolayer at the air/water interface. The pressure-area isotherms were characterized by a transition of the peptide monolayer, which probably corresponds of the partial intercalation of the alpha-helixes at higher surface pressure. Interaction of the peptide molecules with lipid monolayers resulted in an increase of the mean molecular area of phospholipids both in the gel and liquid crystalline states. With increasing peptide concentration, the temperature of the phase transition of the monolayer shifted toward lower temperatures. The analysis showed that the peptide-lipid monolayer is not an ideally miscible system and that the peptide molecules form aggregates in the monolayer.  相似文献   

18.
We introduce a de novo designed peptide model system that enables the systematic study of 1) the role of a membrane environment in coiled-coil peptide folding, 2) the impact of different domains of an alpha-helical coiled-coil heptad repeat on the interaction with membranes, and 3) the dynamics of coiled-coil peptide-membrane interactions depending on environmental conditions. Starting from an ideal alpha-helical coiled-coil peptide sequence, several positively charged analogues were designed that exhibit a high propensity toward negatively charged lipid membranes. Furthermore, these peptides differ in their ability to form a stable alpha-helical coiled-coil structure. The influence of a membrane environment on peptide folding is studied. All positively charged peptides show strong interactions with negatively charged membranes. This interaction induces an alpha-helical structure of the former random-coil peptides, as revealed by circular dichroism measurements. Furthermore, vesicle aggregation is induced by a coiled-coil interaction of vesicle-bound peptides. Dynamic light scattering experiments show that the strength of vesicle aggregation increases with the peptide's intrinsic ability to form a stable alpha-helical coiled coil. Thus, the peptide variant equipped with the strongest inter- and intra-helical coiled-coil interactions shows the strongest effect on vesicle aggregation. The secondary structure of this peptide in the membrane-bound state was studied as well as its effect on the phospholipids. Peptide conformation within the peptide-lipid aggregates was analyzed by (13)C cross-polarization magic-angle spinning NMR experiments. A uniformly (13)C- and (15)N-labeled Leu residue was introduced at position 12 of the peptide chain. The (13)C chemical shift and torsion angle measurements support the finding of an alpha-helical structure of the peptide in its membrane-bound state. Neither membrane leakage nor fusion was observed upon peptide binding, which is unusual for amphiphatic peptide structures. Our results lay the foundation for a systematic study of the influence of the alpha-helical coiled-coil folding motif in membrane-active events on a molecular level.  相似文献   

19.
This study is aimed at establishing optimal conditions for the use of 2,2'-[1,3-propanediylbis[(dimethyliminio)-3,1-propanediyl-1(4H)-pyridinyl-4-ylidenemethy-lidyne]]bis[3-methyl]-tetraiodide (BOBO-1) as a fluorescent probe in the characterization of lipid/DNA complexes (lipoplexes). The fluorescence spectra, anisotropy, fluorescence lifetimes and fluorescence quantum yields of this dimeric cyanine dye in plasmid DNA (2694 base pairs) with and without cationic liposomes (1,2-dioleoyl-3-trimethylammonium-propane [DOTAP]), are reported. The photophysical behavior of the dye in the absence of lipid was studied for several dye/DNA ratios using both supercoiled and relaxed plasmid. At dye/DNA ratios (d/b) below 0.01 the fluorescence intensity increases linearly, whereas lifetime and anisotropy values of the dye are constant (tau approximately 2.5 ns and = 0.20). By agarose gel electrophoresis it was verified that up to d/b = 0.01 DNA conformation is not considerably modified, whereas for d/b = 0.05-0.06 a single heavy band appears on the gel. For these and higher dye/DNA ratios the fluorescence intensity, anisotropy and average lifetime values decrease with an increase in BOBO-1 concentration. When cationic liposomes are added to the BOBO-1/DNA complex, an additional effect is noticed: The difference in the environment probed by BOBO-1 bound to DNA leads to a decrease in quantum yield and average lifetime values, and a redshift is apparent in the emission spectrum. For fluorescence measurements including energy transfer (FRET), a d/b ratio of 0.01 seems to be adequate because no considerable change on DNA conformation is detected, a considerable fluorescent signal is still measured after lipoplex formation, and energy migration is not efficient.  相似文献   

20.
This paper reports a new flow-through fluoroimmunosensor, the function of which is based on antibodies immobilized on an inmunoreactor of controlled-pore glass (CPG), for determination of digoxin, used in the treatment of congestive heart failure and artery disease. The immunosensor has a detection limit of 1.20 microg L(-1) and provides high reproducibility (RSD=4.5% for a concentration of 0.0025 mg L(-1), and RSD=6.7% for 0.01 mg L(-1)). The optimum working concentration range was found to be 1.2 x 10(-3)-4.0 x 10(-2) mg L(-1). The lifetime of the immunosensor was about 50 immunoassays; if stored unused its lifetime can be extended to three months. A sample speed of about 10-12 samples per hour can be attained. Possible interference from substances with structures similar to digoxin (morphine, heroin, tebaine, codeine, pentazocine and narcotine) was investigated. No cross-reactivity was seen at the highest digoxin: interferent ratio studied (1:100). The proposed fluoroimmunosensor was successfully used to determine digoxin concentrations in human serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号