首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) with a 2-nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia-sensitive MRI agent. A control complex, Gd(DO3A-monobutylamide), was also prepared in order to test whether the nitroimidazole side-chain alters either the water proton T(1) relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)(-) as expected for mono-amide derivatives. The water proton T(1) relaxivity (r(1)), bound water residence lifetime (τ(M)) and rotational correlation time (τ(R)) of both complexes was determined by relaxivity measurements, variable temperature (17) O?NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r(1) =6.38?mM(-1) s(-1) at 20?MHz, τ(M) =0.71?μs, τ(R) =141?ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A-monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N(2) as evidenced by an approximately twofold decrease in T(1) measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI.  相似文献   

2.
A novel amphiphilic GdPCTA-[12] derivative has been prepared. The complex formed micelles in aqueous solution with a relatively low CMC, 0.15 mM (25 degrees C). The concentration dependent T1-relaxivity (r1) of the system has been described. The maximum T1-relaxivity, 29.2 s-1 mM-1 (20 MHz, 25 degrees C), was higher than for previously described micellar MRI contrast agents. This high T1-relaxivity is a consequence of the favourable water residence time (tau M) and the fact that the complex is heptadentate allowing two water molecules to coordinate to the gadolinium ion (q = 2).  相似文献   

3.
A tetranuclear gadolinium(III) complex, [Gd4(H2O)8], of DO3A appended onto the pentaerythrityl framework was synthesized to improve the water proton relaxivity for MRI application. The longitudinal relaxivity of [Gd4(H2O)8] is 28.13 mM-1 s-1 (24 MHz, 35+/-0.1 degrees C, pH 5.6) which is 5.86 times higher than that of [Gd(DO3A)(H2O)2]. The relaxivity is based on "molecular" relaxivity of the tetramer and the r1p value is "7 per Gd". The high relaxivity of the tetramer is the result of the decrease in the rotational correlation (tauR) and the presence of eight inner-sphere water molecules (q=8). The complex exhibits pH-dependent longitudinal relaxivity, and the high relaxivity both at low and high pH (r1p=28.13 mM-1 s-1 at pH 5.6 and 16.52 mM-1 s-1 at pH 9.5) indicates that it could be used as a pH-responsive MRI contrast agent. The transverse relaxivity of the tetramer is 129.97 mM-1 s-1 (24 MHz, 35+/-0.1 degrees C, pH 5.6), and the r2p/r1p ratio of 4.6 shows that it could be used as a T2-weighted contrast agent.  相似文献   

4.
The reaction of dihydroxo(1R,2R-cyclohexanediamine)platinum(II) with (-)-quinic acid gave a water soluble complex, (-)-quinato(1R,2R-cyclohexanediamine)platinum(II). The crystal structure of the complex was determined by X-ray analysis. The data indicate a chelation of the alpha-hydroxycarboxylic acid part of quinic acid to platinum(II). The complex shows moderate antitumor activity against murine leukemia L1210 at high doses (T/C x 100 = 179% at a dose of 200 mg/kg).  相似文献   

5.
The effect of a single water molecule on the reaction between H(2)O(2) and HO has been investigated by employing MP2 and CCSD(T) theoretical approaches in connection with the aug-cc-PVDZ, aug-cc-PVTZ, and aug-cc-PVQZ basis sets and extrapolation to an ∞ basis set. The reaction without water has two elementary reaction paths that differ from each other in the orientation of the hydrogen atom of the hydroxyl radical moiety. Our computed rate constant, at 298 K, is 1.56 × 10(-12) cm(3) molecule(-1) s(-1), in excellent agreement with the suggested value by the NASA/JPL evaluation. The influence of water vapor has been investigated by considering either that H(2)O(2) first forms a complex with water that reacts with hydroxyl radical or that H(2)O(2) reacts with a previously formed H(2)O·OH complex. With the addition of water, the reaction mechanism becomes much more complex, yielding four different reaction paths. Two pathways do not undergo the oxidation reaction but an exchange reaction where there is an interchange between H(2)O(2)·H(2)O and H(2)O·OH complexes. The other two pathways oxidize H(2)O(2), with a computed total rate constant of 4.09 × 10(-12) cm(3) molecule(-1) s(-1) at 298 K, 2.6 times the value of the rate constant of the unassisted reaction. However, the true effect of water vapor requires taking into account the concentration of the prereactive bimolecular complex, namely, H(2)O(2)·H(2)O. With this consideration, water can actually slow down the oxidation of H(2)O(2) by OH between 1840 and 20.5 times in the 240-425 K temperature range. This is an example that demonstrates how water could be a catalyst in an atmospheric reaction in the laboratory but is slow under atmospheric conditions.  相似文献   

6.
Lü Z  Wang X  Liu Z  Liao F  Gao S  Xiong R  Ma H  Zhang D  Zhu D 《Inorganic chemistry》2006,45(3):999-1004
A new complex (1) of Prussian blue analogue with the composition of K0.2Mn1.4Cr(CN)6 x 6H2O was prepared and characterized structurally as well as magnetically. The crystal structure of complex 1 was determined by X-ray diffraction analysis. The results indicate that complex 1 consists of a 3D cubic lattice similar to those of Mn3[Cr(CN)6]2 x xH2O, Mn3[Co(CN)6]2 x xH2O, Cd3[Cr(CN)6]2 x xH2O, and Cd3[Co(CN)6]2 x xH2O. Magnetic measurements show that complex 1 is a ferrimagnet with T(c) = 66 K. It is interesting to note that the magnetic behavior of complex 1 can be substantially modulated through a dehydration/rehydration treatment. The T(c) value of this ferrimagnet increases to 99 K after dehydration reaching a 23.4% weight loss, and it decreases back to 66 K after the dehydrated sample reabsorbs water molecules.  相似文献   

7.
童沈阳  孙国斌 《化学学报》1988,46(8):812-815
研究了以meso-四(N-甲基-3-吡啶基)卟啉测定锌痕量锌的荧光光度法, 其灵敏度较其它水溶性卟啉衍生物测定锌的分光光度法要高, 检出量为1ppb, 线性范围为0-1.0μg/25mL. 方法已用于测定自来水和头发中的微量锌, 结果满意.  相似文献   

8.
EPR and water proton relaxation rate (1/T1) studies of partially (40%) and "fully" (90%) purified preparations of membrane-bound (Na+ + K+) activated ATPase from sheep kidney indicate one tight binding site for Mn2+ per enzyme dimer, with a dissociation constant (KD = 0.88 muM) in agreement with the kinetically determined activator constant, identifying this Mn2+-binding site as the active site of the ATPase. Competition studies indicate that Mg2+ binds at this site with a dissociation constant of 1 mM in agreement with its activator constant. Inorganic phosphate and methylphosphonate bind to the enzyme-Mn2+ complex with similar high affinities and decrease 1/T1 of water protons due to a decrease from four to three in the number of rapidly exchanging water protons in the coordination sphere of enzyme-bound Mn2+. The relative effectiveness of Na+ and K+ in facilitating ternary complex formation with HPO2-4 and CH3PO2-3 as a function of pH indicates that Na+ induces the phosphate monoanion to interact with enzyme-bound Mn2+. Thus protonation of an enzyme-bound phosphoryl group would convert a K+-binding site to a Na+-binding site. Dissociation constants for K+ and Na+, estimated from NMR titrations, agreed with kinetically determined activator constants of these ions consistent with binding to the active site. Parallel 32Pi-binding studies show negligible formation (less than 7%) of a covalent E-P complex under these conditions, indicating that the NMR method has detected an additional noncovalent intermediate in ion transport. Ouabain, which increases the extent of phosphorylation of the enzyme to 24% at pH 7.8 and to 106% at pH 6.1, produced further decreases in 1/T1 of water protons. Preliminary 31P- relaxation studies of CH3PO2-3 in the presence of ATPase and Mn2+ yield an Mn to P distance (6.9 +/- 0.5 A) suggesting a second sphere enzyme-Mn-ligand-CH3PO2-3 complex. Previous kinetic studies have shown that T1+ substitutes for K+ in the activation of the enzyme but competes with Na+ at higher levels. From the paramagnetic effect of Mn2+ at the active site on the enzyme on I/T1 of 205T1 bound at the Na+ site, a Mn2+ to T1+ distance of 4.0 +/- 0.1 A is calculated, suggesting the sharing of a common ligand atomy by Mn2+ and T1+ on the ATPase. Addition of Pi increases this distance to 5.4 A consistent with the insertion of P between Mn2+ and T1+. These results are consistent with a mechanism for the (Na+ + K+)-ATPase and for ion transport in which the ionization state of Pi at a single enzyme active site controls the binding and transport of Na+ and K+, and indicate that the transport site for monovalent cations is very near the catalytic site of the ATPase. Our mechanism also accounts for the order of magnitude weaker binding of Na+ compared to K+.  相似文献   

9.
Relaxometry and solution thermodynamic measurements show that Gd(H(2,2)-1,2-HOPO) is a good candidate as a contrast agent for magnetic resonance imaging (MRI-CA). Acidic, octadentate H(2,2)-1,2-HOPO forms a very stable Gd(III) complex [pGd=21.2(2)]. The coordination sphere at the Gd(III) center is completed by one water molecule that is not replaced by common physiological anions. In addition, this ligand is highly selective for Gd(III) binding in the presence of Zn(II) or Ca(II). The symmetric charge distribution of the 1,2-HOPO chelates is associated with favorably long electronic relaxation time T1,2e comparable to those of GdDOTA. This, in addition to the fast water exchange rate typical of HOPO chelates, improves the relaxivity to r1p=8.2 mM-1 s-1 (0.47 T). This remarkably high value is unprecedented for small-molecule, q=1 MRI-CA.  相似文献   

10.
Proton nuclear magnetic resonance (1H NMR) experiments have been performed to measure the spin-lattice, T1, and spin-spin, T2, relaxation times of the three functional groups in water/methanol mixtures at different methanol molar fractions (XMeOH=0, 0.04, 0.1, 0.24, 0.5, 1) as a function of temperature in the range 205 K相似文献   

11.
A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.  相似文献   

12.
Matrix isolation infrared spectroscopy has been applied to study an ozone-water complex of atmospheric interest. The complex was identified in the spectral region of three normal modes of ozone and water. Ab initio calculation at MP4(SDQ), QCISD, and CCSD(T) levels indicates the existence of only one stable conformer, which accords with the present experimental result. This conformer belongs to the Cs symmetry group where two molecular planes of ozone and water are perpendicular to the Cs symmetry plane. The binding energy was calculated to be 1.89 kcal/mol at the CCSD(T)/6-311++G(3df,3pd)//CCSD(T)/6-311++G(d,p) level of theory. The formation constant and atmospheric abundance of the ozone-water complex are estimated using the thermodynamic and spectroscopic data obtained.  相似文献   

13.
Tiezzi E 《Annali di chimica》2003,93(4):471-476
The hypothesis advanced in this paper is based on the formation of dissipative structures, in the form of supramolecular structures of water, by virtue of its hydrogen bonds, structurally similar to a liquid crystal. The supramolecular structure could be a macromolecule typical of a living organism (plant or animal), which as we know is approximately 80% water, with a complex conformation induced initially by an active principle and which remains, organising itself as a result of an input of energy (dynamisation, electromagnetic wave or other). Water is the most abundant substance on earth and has been very well studied with a number of model structures having been proposed and refined. Notwithstanding this, it remains an anomalous liquid where no single model is able to explain all of its properties. Recently our research group in Siena carried out NMR studies on the water molecule measuring nuclear spin relaxation times T1 and T2. The phenomena observed lead to the conclusion that water and aqueous solutions should be regarded as continuous polymorphous self-organizing systems. At the macro-level the water behaviour is related with biodiversity, the core of biological evolution.  相似文献   

14.
A new self-assembled gadolinium(III)-aluminum(III) complex (Gd(3)Al) was synthesized and characterized. The efficacy of this Gd(3)Al complex as a potential bimodal magnetic resonance imaging (MRI)/optical imaging agent has been evaluated. Relaxivity studies showed that the Gd(3)Al complex has higher relaxation efficiency (7.18 mM(-1) s(-1)) compared with the clinically used complex gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA, 3.9 mM(-1) s(-1)) at 400 MHz and 25 °C. In vitro T(1)-MR images on a 0.5 T magnetic field exhibited a remarkable enhancement of signal contrast for Gd(3)Al compared to Gd-DTPA. Furthermore, the Gd(3)Al complex exhibits bright-green luminescence with the emission spectrum centred at 510 nm. Live-cell fluorescence imaging reveals that the Gd(3)Al complex is permeable to cells and localizes to the cytoplasm. In view of the relaxometric and luminescent properties, this Gd(3)Al complex could serve as a potential bimodal MRI/optical imaging agent.  相似文献   

15.
The effect of molecular flexibility on the surface ordering of complex organic adsorbates is explored, using alpha,omega-dihexylquaterthiophene (DH4T) and mixed DH4T|tetracene phases on Ag(111) as model systems. The structure of DH4T/Ag(111) interfaces is determined by the flexibility of the hexyl chains at either end of the quaterthiophene backbone: Above 273 K, DH4T forms a nematic liquid crystalline phase with a director close to the [112] direction of the silver substrate. At 273 K, a reversible phase transition to a long-range ordered, point-on-line coincident phase is observed. However, this ordered state is still affected substantially by the flexible nature of DH4T, which materializes in a large number of local structural defects. If traces of DH4T are coevaporated with tetracene, inclusions of a 1:1 stoichiometric DH4T|tetracene phase are found in a tetracene/Ag(111) matrix (alpha-phase). In this mixed phase, the two surface enantiomers of pro-chiral DH4T on one hand and tetracene on the other form a complex stripe structure. The mixed phase shows a higher degree of order than present at the pure DH4T/Ag(111) interface, which also lacks chiral organization. The addition of tetracene molecules as structural templates stabilizes certain conformations of DH4T and thus, by balancing its structural flexibility, allows the surface-induced chirality of DH4T to become a decisive factor in determining the structure of the mixed phase.  相似文献   

16.
The effect of temperature perturbation on a single-chain-collapse process was studied for poly(methyl methacrylate) with the molecular weight M(w)=1.05 x 10(7) in the mixed solvent of tert-butyl alcohol+water (2.5 vol %). In the chain-collapse process after a quench from the theta; temperature to a temperature T(1), the temperature was changed from T(1) to T(2) at the time t(1) after the quench and returned to T(1) at the time t(1)+t(2). In the three stages at T(1), T(2), and T(1), measurements of the mean-square radius of gyration of polymer chains were carried out by static light scattering and the chain-collapse process was represented by the expansion factor as a function of time. An effect of chain aggregation on the measurements was negligibly small because of the very slow phase separation. For the negative temperature perturbation (T(1)>T(2)), the chain-collapse processes observed in the first and third stages were connected smoothly and agreed with the collapse process due to a single-stage quench to T(1). A memory of the chain collapse in the first stage at T(1) was found to persist into the third stage at the same temperature T(1) without being affected by the temperature perturbation of T(2) during t(2). The memory effect was observed irrespective of the time period of t(2). The positive temperature perturbation (T(1)相似文献   

17.
The manganese(II) ion has many favorable properties that lead to its potential use as an MRI contrast agent: high spin number, long electronic relaxation time, labile water exchange. The present work describes the design, synthesis, and evaluation of a novel Mn(II) complex (MnL1) based on EDTA and also contains a moiety that noncovalently binds the complex to serum albumin, the same moiety used in the gadolinium based contrast agent MS-325. Ultrafiltration albumin binding measurements (0.1 mM, pH 7.4, 37 degrees C) indicated that the complex binds well to plasma proteins (rabbit: 96 +/- 2% bound, human: 93 +/- 2% bound), and most likely to serum albumin (rabbit: 89 +/- 2% bound, human 98 +/- 2% bound). Observed relaxivities (+/- 5%) of the complex were measured (20 MHz, 37 degrees C, 0.1 mM, pH 7.4) in HEPES buffer (r(1) = 5.8 mM(-)(1) s(-)(1)), rabbit plasma (r(1) = 51 mM(-)(1) s(-)(1)), human plasma (r(1) = 46 mM(-)(1) s(-)(1)), 4.5% rabbit serum albumin (r(1) = 47 mM(-)(1) s(-)(1)), and 4.5% human serum albumin (r(1) = 48 mM(-)(1) s(-)(1)). The water exchange rate was near optimal for an MRI contrast agent (k(298) = 2.3 +/- 0.9 x 10(8) s(-)(1)). Variable temperature NMRD profiles indicated that the high relaxivity was due to slow tumbling of the albumin-bound complex and fast exchange of the inner sphere water. The concept of a high relaxivity Mn(II)-based contrast agent was validated by imaging at 1.5 T. In a rabbit model of carotid artery injury, MnL1 clearly delineated both arteries and veins while also distinguishing between healthy tissue and regions of vessel damage.  相似文献   

18.
Photodissociation of aqueous formic acid has been investigated with the CASSCF, DFT, and MR-CI methods. Solvent effects are considered as a combination of the hydrogen-bonding interaction from explicit H2O molecules and the effects from the bulk surrounding H2O molecules using the polarizable continuum model. It is found that the hydrogen-bonding effect from the explicit water in the complex is the major factor to influence properties of aqueous formic acid, while the bulk surrounding H2O molecules has a noticeable influence on the structures of the complex. The direct C-O bond fission along the S1 pathway is predicted to be an important channel upon photolysis of aqueous formic acid at 200 nm, which is consistent with experimental observation that aqueous formic acid dissociates predominantly into fragments of HCO and OH. The existence of a dark channel upon photolysis of aqueous formic acid at 200 nm is assigned as fast relaxation from the S1 Franck-Condon geometry to the T1/S1 intersection and subsequent S1-->T1 intersystem crossing process. S1-->S0 internal conversion followed by molecular elimination to CO+H2O is the most probable primary process for formation of carbon monoxide, which was observed with considerable yield upon photolysis of aqueous formic acid at 253.7 nm.  相似文献   

19.
The first-order rate constant for the decomposition of chlorine nitrate (ClONO2) by water in a cyclic 1:3 complex at stratospheric temperatures is shown to be close to the values for the hydrolysis rate coefficient of chlorine nitrate on an ice surface determined in the laboratory. On the other hand the rate constants calculated for the cyclic 1:1 and 1:2 complexes are much lower than the experimental results. From the mechanistic point of view the reaction is found to be similar to a SN2 mechanism and coupled with water-mediated proton transfer in accordance with the intriguing findings of Bianco and Hynes [R. Bianco, J. T. Hynes. J. Phys. Chem. A 1998, 102, 309-314]. The function of additional water molecules is to act as a catalyst, that is, to accelerate the hydrolysis process. Quantum-mechanical tunneling is negligible above 125 K in the 1:3 complex and above 175 K in the 1:2 complex. At temperatures below these limits all involved protons tunnel through the barrier at energies at least 5 kcalmol(-1) below the barrier-top in a concerted, but asynchronous manner.  相似文献   

20.
Room-temperature long-lived near-IR phosphorescence of boron-dipyrromethene (BODIPY) was observed (λ(em) = 770?nm, Φ(P) = 3.5?%, τ(P) = 128.4?μs). Our molecular-design strategy is to attach Pt(II) coordination centers directly onto the BODIPY π-core using acetylide bonds, rather than on the periphery of the BODIPY core, thus maximizing the heavy-atom effect of Pt(II). In this case, the intersystem crossing (ISC) is facilitated and the radiative decay of the T(1) excited state of BODIPY is observed, that is, the phosphorescence of BODIPY. The complex shows strong absorption in the visible range (ε = 53,800 M(-1) cm(-1) at 574?nm), which is rare for Pt(II)-acetylide complexes. The complex is dual emissive with (3)MLCT emission at 660?nm and the (3)IL emission at 770?nm. The T(1) excited state of the complex is mainly localized on the BODIPY moiety (i.e. (3)IL state, as determined by steady-state and time-resolved spectroscopy, 77?K emission spectra, and spin-density analysis). The strong visible-light-harvesting ability and long-lived T(1) excite state of the complex were used for triplet-triplet annihilation based upconversion and an upconversion quantum yield of 5.2?% was observed. The overall upconversion capability (η = ε×Φ(UC)) of this complex is remarkable considering its strong absorption. The model complex, without the BODIPY moiety, gives no upconversion under the same experimental conditions. Our work paves the way for access to transition-metal complexes that show strong absorption of visible light and long-lived (3)IL excited states, which are important for applications in photovoltaics, photocatalysis, and upconversions, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号