首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the aim of utilizing the Keratinous waste material, poultry feather, which is up till now discarded as a waste, was hydrolyzed to form keratin hydrolyzate (FH). As FH does not form a film, it was mixed with gelatin (G) and FH‐G composite was prepared in film form. FH‐G was further graft co‐polymerized with 2‐hydroxyethyl methacrylate (HEMA) to achieve better physico‐chemical properties for the resultant hydrogels. Percentage grafting studies and IR studies confirmed the grafting of PHEMA onto FH‐G. FH‐G‐PHEMA exhibited better mechanical properties compared to FH‐G and FH‐PHEMA. TG studies clearly indicated the grafting of HEMA onto FH and FH‐G. SEM (Scanning Electron Microscopy) pictures of FH‐G and FH‐PHEMA films exhibited brittle nature on their surface, whereas continuity and A smooth surface was observed on for the FH‐G‐PHEMA films.  相似文献   

2.
聚甲基丙烯酸羟乙酯树脂对胆红素的吸附研究   总被引:6,自引:0,他引:6  
本文通过水相悬浮聚合制备了大孔交联聚甲基丙烯酸羟乙酯(PHEMA)树脂,研究了PHEMA树脂以及用乙醇胺功能基化后的PHEMA树脂对胆红素的吸附性能。结果表明,PHEMA树脂对胆红素的吸附性能受树脂孔结构,吸附温度,离子强度以及溶液中白蛋白的影响。该类吸附剂对胆红素有良好的吸附性能,其中用乙醇胺功能基化的树脂表现出更好的吸附能力。  相似文献   

3.
Capillary electrophoresis (CE) is an important tool of chemical cytometry. Whole-cell analysis using CE starts with cell injection into the capillary by either siphoning or electroosmosis. However, strong adherence of the cell to the support surface can prevent efficient cell injection and lead to irreproducible analysis. Here we evaluated several surfaces as potential cell supports for HT29 cells (human colon adenocarcinoma). These cells strongly adhered to the surface of untreated glass or polystyrene. Hydrophobic coating with dimethyldichlorosilane (DMS) or Sigmacote did not significantly reduce cell adhesion. In contrast, cell adhesion was reduced significantly when the surface was modified with hydrophilic polymers (hydrogels) such as poly(2-hydrohyethyl methacrylate) (PHEMA) and polyvinyl alcohol (PVA). In addition to their pronounced antiadhesive properties, PHEMA and PVA coatings were the most biocompatible (had highest survival of cells in contact with surface). Hydrogel-coated polystyrene plates were tested as a commercial alternative to hydrogel-coated glass slides. The cell adhesive properties of such plates were similar to those of PHEMA and PVA. However, the biocompatibility of the plates was lower than that of the other surfaces tested. Moreover, in contrast to PHEMA- and PVA-coated glass slides, the plates were sensitive to UV light and therefore should not be used when fluorescent image microscopy with UV excitation precedes CE. The analyses of the data obtained showed that PHEMA- and PVA-coated glass slides were the most suitable cell supports for cell injection into the capillary.  相似文献   

4.
The aim of this study is to prepare concanavalin A (Con A) bound poly(2-hydroxy ethyl methacrylate) (PHEMA) beads for cell affinity chromatography. In the first step, PHEMA beads were produced by suspension polymerization, and activated by cyanogen bromide (CNBr) in an alkaline medium (pH 11.5), and then, the bio-ligand “Con A” was attached by covalent binding onto the CNBr activated beads. PHEMA beads were characterized by scanning electron microscopy (SEM), surface area and pore size measurements. The PHEMA beads have a spherical shape and porous structure. The specific surface area of the PHEMA beads was found to be 39.7 m2/g with a size range of 150–200 μm in diameter and the swelling ratio was 55%. The amount of bound Con A was controlled by changing pH and the initial concentrations of CNBr and Con A. The non-specific adsorption of Con A on the plain PHEMA beads was 0.1 mg/g. The maximum Con A binding was 4.8 mg/g at pH 7.25. Both plain and Con A bound PHEMA beads were interacted first with the myeloma cell suspension in phosphate buffer. Myeloma cell attachment was very low for the plain PHEMA beads, while the number of myeloma cells attached increased almost 20 fold when the Con A bound beads were used. In order to look at whether or not the interaction of the Con A bound PHEMA beads and myeloma cells are affected from the biological molecules and other cells in the medium. We selected sheep blood itself as the medium, and mixed with the myeloma cell suspension and changed the environment. Cell adhesion decreased but not very significantly by changing the medium from simple buffer to sheep blood.  相似文献   

5.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

6.
Silicone rubbers have shown considerable promise in the biomedical field, but their hydrophobicity leads to serious problems in long‐term implants. In our study, composites of poly (dimethylsiloxane) (PDMS) and spherically shaped poly (2‐hydroxyethylmethacrylate) (PHEMA) microparticles were prepared. Unlike previous silicone hydrogel composites, suspension polymerization was carried out in an aqueous medium to prepare PHEMA particles directly, which avoided the removal of organic phase and give hydrogel particles with high purity. Very fine PHEMA particles with uniform geometry and small size were obtained through various influencing factors during their formation. Through the introduction of PHEMA particles, PDMS matrix was endowed with hydrophilicity to a certain extent. With an increase in hydrogel content, higher swelling ability and surface wettability of the composites were observed. We have also demonstrated that smaller sized particles are more favorable for hydrophilicity improvement. The results of improved swelling ability, surface wettability, and low affinity to lipid show that this composite material is suitable for biomedical use. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Conformational properties of isotactic poly(2-hydroxyethyl methacrylate) (PHEMA) have been studied in mixtures of water and several aliphatic alcohols by viscometry and fluorometry. The highest fluorescence intensity of auramine has been detected in aqueous isotactic PHEMA solution compared with several aliphatic alcohol systems. Upon aliphatic alcohol addition, there was the decrease of fluorescence intensity of auramine. As the number of aliphatic group of alcohol increases, the decrease of fluorescence intensity of auramine has been pronounced. And the sharp increases of the reduced viscosity of isotactic PHEMA in water-alcohol solvents were observed in the lower region of alcohol volume percentage with the increasing number of aliphatic group of alcohol. Nevertheless, the sharp increase of the reduced viscosity of isotactic PHEMA in ethyleneglycol-water solvent was obtained even at a low-volume percentage region of ethyleneglycol at which compact structures exist. Therefore, we consider that the increase of viscosity at this region is due to the hydrophilic side group of polymer-solvent interaction, forming hydrogen bonds. The experimental results suggest that compact structures of isotactic PHEMA in aqueous solution are caused by hydrophobic interactions by methyl group of polymer backbone, and the hydrophobic interaction by adding alcohols. Finally, our study brings the fact that the solvating sites of alcohols on the isotactic PHEMA molecule are strongly influenced by the number of hydroxyl and aliphatic group in alcohols.  相似文献   

8.
The properties of surface‐ and bulk‐modified poly(dimethylsiloxane) (PDMS) were examined. Laser‐induced surface grafting of poly(2‐hydroxyethyl methacrylate) (PHEMA) on PDMS and a sequential method for preparation of interpenetrating polymer networks of PDMS/PHEMA were, respectively, used for surface and bulk modifications. The hydrogel content and water‐uptake capability of the modified samples were also investigated. The modified PDMS samples were examined by performing attenuated total reflection/Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, scanning electron microscopy, and water contact‐angle measurements. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2145–2156, 2003  相似文献   

9.
采用在甲基丙烯酸甲酯(MMA)悬浮聚合过程中滴加甲基丙烯酸-2-羟乙酯(HEMA)乳液聚合组分的悬浮-乳液耦合聚合方法,制备了大粒径聚甲基丙烯酸甲酯/聚甲基丙烯酸-2-羟乙酯(PMMA/PHEMA)复合微球。PMMA/PHEMA复合微球表面以HEMA乳液聚合物为主,且具有微孔结构。PMMA/PHEMA复合微球在水和苄醇中的平衡溶胀率大于PMMA微球。PMMA/PHEMA复合微球48h异丁苯丙酸负载百分比为35.6%,PMMA为27.6%。在磷酸盐缓冲液中释放时间达到360h,释放量占负载总量的82%;而PMMA微球的释放时间为216h,释放量仅占负载总量的60%。  相似文献   

10.
A group of novel 2-ferrocenyl quinoline derivatives was designed and their photophysical properties were thoroughly studied. UV-VIS and steady-state fluorescence spectra show that these compounds gain energy in the ultra-violet region and give red emissions in different organic solvents. More importantly, two transparent hybrid thick films composed of 2-ferrocenyl quinoline and poly[1-(methoxycarbonyl)-1-methylethylene] (poly(methyl 2-methylpropenoate, (poly(methyl methacrylate), PMMA), or poly[2-hydroxyethyl 2-methylprop-2-enoate] (poly(2-hydroxyethyl methacrylate), PHEMA) matrix were successfully prepared. Both films showed red emissions of ferrocenyl quinoline chromophore and the ideal composition of luminescent species is 10−6 M PMMA and 10−5 M PHEMA, respectively. SEM graph exhibited ferrocenyl quinoline molecules dispersed very homogenously within the above polymer hosts.  相似文献   

11.
Nonspecific interaction is a key parameter affecting the efficiency of proteins, nucleic acids or cell separation. Currently, many approaches to introduce antifouling properties to materials have been developed. Among these, surface modification with polymer brushes plays a prominent role. The aim of this study was to synthesize new magnetic microspheres grafted with poly(N,N‐dimethylacrylamide) (PDMA) that resist nonspecific protein adsorption. Monodisperse macroporous poly(2‐hydroxyethyl methacrylate) (PHEMA) microspheres, 4 μm in size, were synthesized by a multiple swelling polymerization method. To render the microspheres magnetic, iron oxide was precipitated inside the microsphere pores. Functional carboxyl groups, introduced by the hydrolysis of the 2‐(methacryloyl)oxyethyl acetate (HEMA‐Ac) comonomer, were used to react with propargylamine, followed by coupling of a chain transfer agent via an azide‐alkyne click reaction. PDMA was grafted from the PHEMA microspheres using reversible addition‐fragmentation chain transfer polymerization (RAFT), resulting in surfaces with more than 81 wt % PDMA attached. The successful modification of the microspheres was confirmed by XPS. The magnetic microspheres grafted with PDMA showed excellent antifouling properties as tested in bovine serum protein solutions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1036–1043  相似文献   

12.
《中国化学会会志》2017,64(6):612-617
We report a new, unique process for the design of poly(2‐hydroxyethyl methacrylate) (PHEMA )‐based hybrid materials, which involves the coating of PHEMA on TiO2 and TiO2 /Ag nanoparticle surface under visible light. New hybrid materials initiated under different conditions were prepared under visible light, which could be used for the theoretical design of nanohybrid materials. The hybrid materials thus prepared were characterized by Fourier transform infrared spectroscopy (FTIR ), transmission electron microscopy (TEM ), and thermogravimetric analysis (TGA ). The experimental results confirmed the successful synthesis of TiO2–PHEMA hybrid materials. Compared to other methods, the method reported here involving the direct combination of PHEMA on the TiO2 surface was simply catalyzed by visible light without the addition of initiators.  相似文献   

13.
Fibrin–gelatin composite (PFG) films were prepared and crosslinked with glutaraldehyde as reported by us previously. These composites were graft‐copolymerized with poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxypropyl methacrylate) (PHPMA) with a potassium persulfate and sodium metabisulfite redox initiation system. The graft copolymers (PFG‐HEMA and PFG‐HPMA) were characterized for their percentage of grafting, percentage of equilibrium water content, and percentages of free water and bound water. The chemical composition and thermal, mechanical, morphological, and surface characteristics were also evaluated. The optimum conditions for obtaining a maximum percentage of grafting were standardized. PFG and its graft copolymers exhibited higher equilibrium water contents ranging from 60 to 77% when compared with those of HEMA and HPMA homopolymers. DSC studies revealed increased freezing water contents and decreased bound‐water contents for the graft copolymers when compared with those of PFG alone. These properties improved the efficacy of hydrogels. PFG demonstrated better mechanical properties as compared with its graft copolymers. This may be attributed to the alkaline reaction conditions wherein protein hydrolysis of PFG would have occurred thereby reducing the overall strength of the graft copolymers. IR and scanning electron microscopic studies confirmed the grafting of PHEMA and PHPMA onto PFG. Contact‐angle studies revealed increased polarity for graft copolymers, which is a symbol for increased hydrophilicity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2241–2252, 2004  相似文献   

14.
Therapeutic contact lenses have attracted significant attention during the last decades. In this study, we used chitosan‐conjugated poly(2‐hydroxyethyl methacrylate) (PHEMA) for contact lens application. We aimed to increase affinity of anionic drugs, which are used in treatment of eye diseases. In this regard, we evaluated delivery of the small molecule anionic drug, ascorbic acid from the chitosan‐conjugated PHEMA. Chitosan immobilization improves drug loading efficiency and induces sustained release of ascorbic acid. The chitosan modified hydrogel also reduces the biofouling of tear fluid components. Our results showed that surface modification by chitosan inhibits protein and bacterial deposition on the contact lens. Protein absorption analysis revealed that neat PHEMA adsorbed tear proteins at a density of 28.4 ± 4.4 μg/cm2, whereas the chitosan‐conjugated hydrogel adsorbed tear proteins at a density of 18.5 ± 1.8 μg/cm2. Moreover, the neat PHEMA bacterial adhesion had a mean CFU value of 273 ± 27. However, a significant decrease in the number of bacterial colonies was observed in the chitosan group with a CFU value of 9 ± 6.  相似文献   

15.
A microfluidic system with an inserted membrane assembled using mechanical fastening process is described. The membrane is made of a biocompatible water swollen poly(2‐hydroxyethyl methacrylate) (PHEMA) hydrogel thin film as a sealing component. The hyperelastic characteristics of PHEMA membrane under the compression during fastening are investigated through numerical simulations, including strain and Von Mises stress distribution, and potential fracture in correlation with the microchannel's geometry and dimensions. To validate the modeling, the experiments have also been conducted to visualize the deformation induced in membrane and internal stress distribution using 3D optical measuring system. The results from this study have revealed the implications in connection with the mechanical behavior of the PHEMA membranes in the assembly of microfluidic system through mechanical fastening technique. This will ultimately assist to produce a guideline for the optimum design of microchannels in the uses of PHEMA membranes and associated assembly process. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 485–495  相似文献   

16.
The nonspecific interaction of proteins with surfaces in contact with biofluids leads to adverse problems and is prevented by a biocompatible surface coating. The current benchmark material among such coatings is poly(ethylene glycol) (PEG). Herein, we report on the synthesis of linear polyglycerol derivatives as promising alternatives to PEG. Therefore, gold surfaces as a model system are functionalized with a self‐assembled monolayer (SAM) by a two‐step anhydride coupling and a direct thiol immobilization of linear poly(methyl glycerol) and polyglycerol. Surface plasmon resonance (SPR) spectroscopy reveals both types of functionalized surfaces to be as resistant as PEG towards the adsorption of the test proteins fibrinogen, pepsin, albumin, and lysozyme. Moreover, linear polyglycerols adsorb even less proteins from human plasma than a PEG‐modified surface. Additional cell adhesion experiments on linear poly(methyl glycerol) and polyglycerol‐modified surfaces show comparable cell resistance as for a PEG‐modified surface. Also, in the case of long‐term stability, high cell resistance is observed for all samples in medium. Additional in vitro cell‐toxicity tests add to the argument that linear poly(methyl glycerol) and polyglycerol are strong candidates for promising alternatives to PEG, which can easily be modified for biocompatible functionalization of other surfaces.  相似文献   

17.
Miscible blends of poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(1‐vinylimidazole) (PVI) have been formed in methanol/water (3/2 v/v) solutions. The incorporation of 0.6 wt % C60 into PHEMA leads to hydrophobic interactions and enhanced hydrogen bonding in miscible blends of [60]fullerenated poly(2‐hydroxyethyl methacrylate) (FPHEMA) with PVI. The incorporation of 2.6 wt % C60 into PHEMA increases its tendency to form interpolymer complexes with PVI. Interpolymer complexes are formed when FPHEMA samples containing 0.6, 1.4, and 2.6 wt % C60 are blended with poly(4‐vinylpyridine). The yields of the complexes increase with increasing C60 content in FPHEMA. Calorimetry and Fourier transform infrared spectroscopy studies suggest the importance of hydrophobic interactions in C60‐containing blends and complexes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4316–4327, 2002  相似文献   

18.
Conformational properties of isotactic poly(2-hydroxyethyl methacrylate) (PHEMA) have been studied by viscometry in various electrolytic solutions. The intrinsic viscosity of isotactic PHEMA at 0.01M salt solution increases with decreasing the B coefficient in Jones—Dole's equation. In respective to water structures, a polymer chain is more expanded in the salt solution including water structure breaker ions. As the concentration of ions increases, the interactions between polymer segments and ions make a major contribution to conformational changes of isotactic PHEMA. Depending on the kind of ions, a salting-in or out effect is observed at higher concentrations than 0.1M salt solution. We observed that the denaturing effects of various anions in isotactic PHEMA salt solutions are as follows; SO42- < F? < I? NO3? < SCN-. This order is similar to the Hofmeister series. To investigate the influences of denaturing agents on solvent structures, we also compared the guanidine hydrochloride effect with the tetrabutylammonium chloride effect in isotactic PHEMA solution.  相似文献   

19.
Nanostructure, glass transition dynamics and elastic properties were studied in the 3D nanodiamond‐containing composites based on polyurethane‐poly(2‐hydroxyethyl methacrylate) semi‐interpenetrating polymer networks (PU‐PHEMA semi‐IPNs), neat PU or PHEMA matrices. Nanodiamond (ND) content in the nanocomposites varied from 0.25 to 3 wt %. Combined differential scanning calorimetry/ laser‐interferometric creep rate spectroscopy/atomic force microscopy approach was utilized. A large impact of small 3D ND additives on PU‐PHEMA networks' dynamics and properties was revealed under conditions when an average inter‐particle distance L exceeds by far gyration radius Rg. The pronounced heterogeneity of glass transitions' dynamics and two opposite effects were observed. The main effect was a strong suppression of PHEMA glass transition dynamics at 90–180 °C, with the enhancement of creep resistance and threefold to sixfold increasing modulus of elasticity. The peculiarly crosslinked structure of nanocomposites, due to double covalent hybridization, resulted in low rheological percolation threshold, and a synergistic effect in dynamics was observed. Less pronounced effect of accelerating dynamics in the temperature region between β‐ and α‐transitions in PHEMA was associated with dynamics in domains with loosened molecular packing. The distinct physical limit for “anomalous” decreasing Tg is predicted in terms of the notion of the common segmental nature of α‐ and β‐relaxations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1696–1712, 2008  相似文献   

20.
In this paper, we describe a graft polymerization/solvent immersion method for generating poly(2-hydroxyethyl methacrylate) (PHEMA) brushes in various patterns. We used a novel fabrication process, involving very-large-scale integration and oxygen plasma treatment, to generate well-defined patterns of polymerized PHEMA on patterned Si(100) surfaces. We observed brush- and mushroom-like regions for the PHEMA brushes, with various pattern resolutions, after immersing wafers presenting lines of these polymers in MeOH and n-hexane, respectively. The interaction between PHEMA and ferritin protein sheaths in MeOH and n-hexane (good and poor solvent for PHEMA, respectively) was used to capture and release ferritins from fluidic system. The “tentacles” behaver for PHEMA brushes was found through various solvents in fluidic system. Using high-resolution scanning electron microscopy, we observed patterned ferritin Fe cores on the Si surface after pyrolysis of the patterned PHEMA brushes and ferritin protein sheaths, which verify the “tentacles” behaver for PHEMA brushes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号