首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid functional materials (HFMs) comprised of semiconductor nanoparticles and conjugated polymers offer the potential of synergetic photophysical properties. We have developed HFMs based upon silicon nanocrystals (SiNCs) and the conductive polymer poly(3‐hexylthiophene) (SiNC@P3HT) by applying surface‐initiated Kumada catalyst transfer polycondensation (SI‐KCTP). One unique characteristic of the developed SiNC@P3HT is the formation of a direct covalent bonding between SiNCs and P3HT. The presented method for obtaining direct interfacial attachment, which is not accessible using other methods, may allow for the development of materials with efficient electronic communication at the donor–acceptor interfaces. Systematic characterization provides evidence of a core–shell structure, enhanced interfacial electron and/or energy transfer between the P3HT and SiNC components, as well as formation of a type‐II heterostructure.  相似文献   

2.
Kumada catalyst-transfer polycondensation (KCTP) has proven to be an excellent strategy toward the synthesis of well-defined conjugated polymers. In this report, Ni(0) species are reacted with surface-bound aryl bromides to yield KCTP initiators of structure (aryl)Ni(II)-Br. Surface-confined Kumada reactions are carried out with a ferrocene functionalized Grignard reagent to quantify initiator coverage, ligand exchange, and Kumada reaction kinetics. In addition, surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) is carried out from the fabricated initiators to modify SiO(2) and ITO surfaces. Uniform poly(3-methylthiophene) films with thicknesses between 40 and 65 nm were characterized using a variety of spectroscopic and electrochemical techniques.  相似文献   

3.
Poly-3-methylthiophene (P3MT) was synthesized in the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) by constant potential and constant current respectively. The structure and morphology of P3MT films were characterized by FTIR spectrum and SEM. The undoped (reduction) and doped (oxidation) forms of P3MT film prepared in ionic liquid were reversible and stable. The P3MT film has strong characteristics of electrocatalytic oxidation of ascorbic acid and can separate the oxidation peaks of ascorbic acid and dopamine. Two methods of potential steps were used to observe the response time of the film and the film was found to have perfect electrochromic response.  相似文献   

4.
The deposition of polyelectrolyte multilayer films (PEMs) appears more and more as a versatile tool to functionalize a broad range of materials with coatings having controlled thicknesses and properties. To increase the control over the properties of such coatings, a good knowledge of their deposition mechanism is required. Since Cohen Stuart et al. (Langmuir 18 (2002) 5607-5612) showed that the adsorption of one polyelectrolyte could induce desorption of polyelectrolyte complexes instead of regular deposition, more and more findings highlight peculiarities in the deposition of such films. Herein we demonstrate that the association of sodium polyphosphate (PSP) as the polyanion and either poly(-L-lysine hydrobromide) (PLL) or poly(allylamine chloride) (PAH) as the polycations may lead to non-monotonous film deposition as a function of time. Complementary, films containing PSP and PLL can be obtained from a (PLL-HA)(n) template films after the exchange of HA (hyaluronic acid) from the sacrificial template by PSP from the solution. This exchange is accompanied by pronounced film erosion. However, when starting from a (PAH-HA)(n) template, the film erosion and exchange due to the contact with PSP is by far less pronounced, nevertheless the film morphology changes. These findings show that the nature of the polycation used to deposit the PEM film may have a profound influence of the film's response to a competing polyanion.  相似文献   

5.
We report a novel method for the immobilization of Tris-(8-hydroxyquinoline) aluminum (Alq3) onto poly(4-vinylpyridine) (P4VP) thin polymer films by UV irradiation cross-linking. The polymer films were prepared by spin-coating of P4VP onto cleaned silicon wafer surface followed by UV irradiation. The thicknesses of the polymer thin films were measured by ellipsometry with different irradiation times. The immobilization of Alq3, orientation and the surface activity were followed using photoluminescence and UV-visible spectroscopy. The surface morphology was investigated by using field emission scanning electron microscopy and atomic force microscopy. Patterning of Alq3 on P4VP film was obtained using photolithography technique. Our experimental results show that the cross-linked P4VP thin film is a universal surface modifier.  相似文献   

6.
Adsorption and self-assembly of cobalt phthalocyanine (CoPc) molecules on Pb(111) thin films with a thickness ranging from 10 atomic monolayers (ML) to 20 ML were investigated by using scanning tunneling microscopy and spectroscopy (STM/STS). Unprecedented thickness-selective oscillating adsorption and self-assembly behavior of the molecules on the films were observed. STS measurement reveals that this oscillatory behavior arises from quantum size effect. The strong quantum confinement of electron motion in the Pb films modulates the electronic density of states at the Fermi level (DOS(EF)), leading to preferential adsorption at thicknesses of higher DOS(EF). The work provides an unambiguous evidence for quantum modulation of surface reactivities of a metal thin film.  相似文献   

7.
Polymer/nanoparticle composite films are receiving growing attention thanks to their potential for application in ultra-thin electronic and optical devices. Polymer blend demixing has been shown to be a suitable technique for the structuring of polymer thin films and the patterning of nanoparticles (NP) within them. In this work we show that the morphology of thin polymer films made by spin-casting a polymer blend solution containing NP fillers on a surface depends strongly on the concentration of NP fillers. More specifically, polystyrene/polymethylmethacrylate (PS/PMMA) films formed from a toluene solution, and which demix following a nucleation and growth mechanism, were studied. It was found that both the height and the surface density of PMMA domains increased as the concentration of CoPt:Cu NPs in the film was increased. We find that similar effects are induced in a NP-free PS/PMMA demixed film upon increasing the molecular weight of the PS molecules. This suggests that under certain conditions the NPs and the polymer molecules in the blend do not behave as separate species but form aggregates.  相似文献   

8.
Electrochemical reduction of the diazonium salts of 4-nitrobenzene and 4-nitroazobenzene-4'- has been investigated in aqueous acid and acetonitrile media at carbon surfaces. Using pyrolyzed photoresist films as the substrate, we have examined the deposited films using electrochemistry and atomic force microscopy (AFM). Film thicknesses were measured by scratching through the film with an AFM tip. The procedure employed two AFM cantilevers with different lengths, located on the one device. When the shorter cantilever engages the surface in tapping mode, the longer cantilever (which is not resonating) imbeds into the surface with a constant force. For both modifiers and modification media, film thicknesses increase with deposition time to a limiting value. With equivalent modification conditions, films prepared in aqueous acid medium have lower limiting thicknesses than those prepared in acetonitrile. For nitrophenyl (NP) films, the same trends are found when calculating surface coverages from the charge associated with the reduction of surface -Ar-NO2 groups. Lower limiting film thicknesses and surface coverages for films prepared in aqueous conditions is attributed to growth of inherently more blocking films and is supported by examination of the response of the Fe(CN)6(3-/4-) couple at NP-modified surfaces. Combination of voltammetrically determined surface coverage and film thickness data yields a surface coverage of -Ar-NO2 groups of (2.5 +/- 0.5) x 10(-10) mol cm(-2) for a film thickness equivalent to a monolayer of NP groups.  相似文献   

9.
Human blood plasma and serum pose significant challenges to implanted devices because of highly unfavorable nonspecific protein adsorption on the surface. In this work, we introduce an improved two-step method to immobilize initiator thiols on a gold substrate for the surface-initiated atom-transfer radical polymerization (SI-ATRP) of hydroxypropyl methacrylate (HPMA). We investigate protein adsorption from a single-protein solution, diluted (10%) and undiluted (100%) human blood plasma, and serum on the poly(HPMA) brushes with different film thicknesses using surface plasmon resonance (SPR) sensors. SPR results show a correlation between antifouling properties and film thickness; that is, the poly(HPMA) brushes exhibit high protein resistance at medium film thicknesses of ~25-40 nm (e.g. <0.3 ng/cm(2) for single-protein adsorption and 10% human blood plasma and serum, ~24.5 ng/cm(2) for 100% human serum, and ~52.8 ng/cm(2) for 100% human plasma at a thickness of ~29 nm). With an optimal film thickness and surface roughness, the poly(HPMA) brush also demonstrates its high resistance to fibroblast adhesion. This work provides an alternative surface polymerization approach to preparing effective antifouling poly(HPMA) materials for potential applications in blood-contacting medical devices.  相似文献   

10.
Conducting polymer films are grown by mass-selected, hyperthermal thiophene ions coincident on a surface with a thermal beam of organic monomers of either alpha-terthiophene (3T) or p-terphenyl (3P) neutrals. Mass spectrometry and X-ray photoelectron spectroscopy previously verified polymerization of both 3T and 3P by 200 eV C(4)H(4)S(+) during surface polymerization by ion-assisted deposition (SPIAD). The electronic structure of these films are probed here by ultraviolet photoelectron spectroscopy (UPS) and polarized near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and compared with similar spectra of evaporated films. The conducting polymer films formed by SPIAD display new valence band features resulting from a reduction in both their band gap and barrier to hole injection, which are calculated from the occupied and unoccupied valence band states measured by UPS and NEXAFS. These changes in film electronic structure result from an increase in the electron conjugation length and other changes in film structure induced by SPIAD.  相似文献   

11.
Thin films of metal phthalocyanines (MPc) are known to exhibit excellent physical properties but poorly controlled morphologies. Therefore, the present work seeks to understand the film growth mechanism of a model compound for potentially usable MPc, specifically, copper tetra(3-nitro-5-tert-butyl)phthalocyanine (CuPc*). The Langmuir-Schaefer (LS) technique was applied to prepare a series of CuPc* films under different processing conditions. The film growth was examined by Brewster angle microscopy (BAM) on the water surface and small-angle X-ray scattering (SAXS) from the solid films. Neutron reflectometry (NR) measurements of the water uptake into the films and computer simulation of hydrated CuPc* were performed to substantiate an idea of colloidal MPc-water aggregates as nanoscale precursors of smooth solid films. This idea appears fruitful in terms of materials chemistry.  相似文献   

12.
We report on the influence of polyanion molecular weight on the growth and structure of multilayered thin films fabricated from poly(allylamine) (PAH) and well-defined, end-labeled poly(acrylic acid) (PAA) synthesized by atom transfer radical polymerization. We observed striking differences in the growth of PAH/PAA films fabricated using well-defined PAA compared to films fabricated using higher molecular weight, commercially available PAA. Past studies demonstrate that the thicknesses of PAH/PAA films increase as linear functions of the number of PAH and PAA layers deposited over a broad range of pH (e.g., from pH 2.5 to 4.5). We observed the thicknesses of films fabricated using solutions of PAH and PAA adjusted to pH 7.5 and 3.5, respectively, to increase in a nonlinear manner. Films fabricated using well-defined, low molecular weight samples of PAA under these conditions increased in thickness exponentially. Experiments using samples of PAA having substantially non-overlapping molecular weight distributions demonstrated a clear relationship between the molecular weight of PAA and rates of film growth. We also used confocal microscopy, in combination with fluorescently end-labeled samples of PAA, to characterize the location of PAA in these assemblies. The results of these experiments, when combined, support the general conclusion that PAA is able to penetrate or diffuse into these films over large distances during assembly. The mechanism of growth for these films thus appears similar to that recently reported for the exponential growth of films fabricated using a variety of biologically relevant polyelectrolytes. The use of living/controlled methods of polymerization to synthesize well-defined samples of PAA facilitates an interpretation of these differences in film behavior as arising largely from differences in polymer molecular weight and polydispersity. This work provides insight into the assembly and structure of a well-studied weak polyelectrolyte film system and illustrates the potential of living/controlled methods of polymerization to contribute to the characterization and understanding of the physical properties of these ionically cross-linked materials.  相似文献   

13.
2D conductive metal–organic frameworks (2D c-MOFs) feature promising applications as chemiresistive sensors, electrode materials, electrocatalysts, and electronic devices. However, exploration of the spin-polarized transport in this emerging materials and development of the relevant spintronics have not yet been implemented. In this work, layer-by-layer assembly was applied to fabricate highly crystalline and oriented thin films of a 2D c-MOF, Cu3(HHTP)2, (HHTP: 2,3,6,7,10,11-hexahydroxytriphenylene), with tunable thicknesses on the La0.67Sr0.33MnO3 (LSMO) ferromagnetic electrode. The magnetoresistance (MR) of the LSMO/Cu3(HHTP)2/Co organic spin valves (OSVs) reaches up to 25 % at 10 K. The MR can be retained with good film thickness adaptability varied from 30 to 100 nm and also at high temperatures (up to 200 K). This work demonstrates the first potential applications of 2D c-MOFs in spintronics.  相似文献   

14.
2D conductive metal–organic frameworks (2D c‐MOFs) feature promising applications as chemiresistive sensors, electrode materials, electrocatalysts, and electronic devices. However, exploration of the spin‐polarized transport in this emerging materials and development of the relevant spintronics have not yet been implemented. In this work, layer‐by‐layer assembly was applied to fabricate highly crystalline and oriented thin films of a 2D c‐MOF, Cu3(HHTP)2, (HHTP: 2,3,6,7,10,11‐hexahydroxytriphenylene), with tunable thicknesses on the La0.67Sr0.33MnO3 (LSMO) ferromagnetic electrode. The magnetoresistance (MR) of the LSMO/Cu3(HHTP)2/Co organic spin valves (OSVs) reaches up to 25 % at 10 K. The MR can be retained with good film thickness adaptability varied from 30 to 100 nm and also at high temperatures (up to 200 K). This work demonstrates the first potential applications of 2D c‐MOFs in spintronics.  相似文献   

15.
Li  Lin  Sun  LiCheng 《中国科学:化学(英文版)》2012,55(9):1976-1981
A cobalt-based catalyst was directly photo-deposited on the surface of a widely used n-type nano-structured semiconductor(TiO 2).Different thicknesses of the TiO 2 films as well as different time of photo-deposition of the Co-based catalyst on TiO 2 films have been optimized.It was found that the electrode with 3 layers of TiO 2 film(in 8 m thickness) and 1 hour photo-deposition of the cobalt-based catalyst by light irradiation from a 500 W Xenon lamp gave the highest current density(~5 mA/cm 2).Using this cobalt-modified TiO 2 film as a working electrode in an electrochemical device,highly efficient water oxidation has been demonstrated in a pH 7.0 aqueous solution with low overpotential.  相似文献   

16.
Arylmethyl films have been grafted to glassy carbon surfaces and to pyrolyzed photoresist films (PPFs) by electrochemical oxidation of 1-naphthylmethylcarboxylate and 4-methoxybenzylcarboxylate. Atomic force microscopy (AFM) and electrochemistry were used to characterize the as-prepared films and to monitor changes induced by post-preparation treatments. Film thickness was measured by depth profiling using an AFM tip to remove film from the PPF surface. Surface coverage of electroactive modifiers was estimated from cyclic voltammetry, and monitoring the response of a solution-based redox probe at grafted surfaces gave a qualitative indication of changes in film properties. For preparation of the films, the maximum film thickness increased with the potential applied during grafting, and all films were of multilayer thickness. The apparent rate of electron transfer for the Fe(CN)(6)3-/Fe(CN)(6)4- couple was very low at as-prepared films. After film-grafted electrodes were transferred to pure acetonitrile-electrolyte solution and subjected to negative potential excursions, the response of the Fe(CN)(6)3-/Fe(CN)(6)4- couple changed and was consistent with faster electron-transfer kinetics, the film thickness decreased and the surface roughness increased substantially. Applying a positive potential to the treated film reversed changes in film thickness, but the voltammetric response of the Fe(CN)(6)3-/Fe(CN)(6)4- couple remained kinetically fast. After as-prepared films were subjected to positive applied potentials in acetonitrile-electrolyte solution, the apparent rate of electron transfer for the Fe(CN)(6)3-/Fe(CN)(6)4- couple remained very slow and the measured film thickness was the same or greater than that before treatment at positive potentials. Mechanisms are considered to explain the observed effects of applied potential on film characteristics.  相似文献   

17.
A series of surfactant-encapsulated polyoxometalates which have different compositions, shapes, and sizes, are able to self-assemble to the highly ordered honeycomb-structured macroporous films at the air/water interface without any extra moist airflow across the solution surface. The honeycomb film pores in the average diameter of 2-3 μm are obtained, which are independent of the polyoxometalates. It is speculated that the cooled micrometer water droplets act as the necessary templates for the formation of macropores, and the stability of these water droplets is crucial during the self-assembly. With increasing the concentration of surfactants, various morphologies from lowly ordered honeycomb films to highly ordered honeycomb films and then to disordered fragments can be modulated. The interfacial tension between chloroform solution and water droplets induces the changes of films. High-resolution TEM observations indicate a close-packed lamellar structure in the ordered honeycomb film walls. The self-assembly successfully performs the transfer of functional polyoxometalates from bulk solutions to interfacial films. Consequently, the produced honeycomb films present electronic activities, such as ferromagnetism and electrochemical properties. These detailed researches will enrich the studies based on materials obtained by encapsulations in cationic surfactants to construct newly nanostructures of polyoxometalates at interfaces, and promote the potential applications of the honeycomb films of surfactant-encapsulated polyoxometalates in advanced materials.  相似文献   

18.
Polyelectrolyte multilayer thin films were prepared by an alternate deposition of poly(allylamine hydrochloride) (PAH) and anionic polysaccharides {carboxymethylcellulose (CMC) and alginic acid (AGA)} on the surface of a gold (Au) disk electrode, and the binding of ferricyanide [Fe(CN)(6)](3)(-) and hexaammine ruthenium ions [Ru(NH(3))(6)](3+) to the films was evaluated. Poly(acrylic acid) (PAA) was also employed as a reference polyanion bearing carboxylate side chains. A quartz-crystal microbalance study showed that PAH-CMC and PAH-AGA multilayer films grow exponentially as the number of depositions increases. The thicknesses of five bilayers of (PAH-CMC)(5) and (PAH-AGA)(5) films were estimated to be 150 +/- 20 and 90 +/- 15 nm, respectively, in the dry state. The PAH/polysaccharide multilayer film-coated Au electrodes exhibited a redox response to the [Fe(CN)(6)](3)(-) ion dissolved in solution, irrespective of the sign of the surface charge of the film, suggesting the high permeability of the films to the [Fe(CN)(6)](3)(-) ion. In contrast, the PAH-PAA film-coated Au electrodes exhibited a redox response only when the outermost surface of the film was covered with a positively charged PAH layer. However, the permeation of the [Ru(NH(3))(6)](3+) cation was severely suppressed for all of the multilayer films. It was possible to confine the [Fe(CN)(6)](3)(-) ion in the films by immersing the film-coated electrodes in a 1 mM [Fe(CN)(6)](3)(-) solution for 15 min. Thus, the [Fe(CN)(6)](3)(-)-confined electrodes exhibited a cyclic voltammetric response in the [Fe(CN)(6)](3)(-) ion-free buffer solution. The loading of the [Fe(CN)(6)](3)(-) ion in the films was higher when the surface charge of the film was positive and increased with increasing film thickness. It was also found that the [Fe(CN)(6)](3)(-) ion confined in the films serves as an electrocatalyst that oxidizes ascorbic acid in solution.  相似文献   

19.
In this study, we present an electrochemically controlled surface plasmon resonance (EC‐SPR) biosensor to detect adrenaline on poly(2‐aminobenzylamine) (P2ABA) thin films. The P2ABA thin films are stable and display electroactivity in a neutral PBS solution. Specific detection of adrenaline was performed on P2ABA thin films because the benzylamine groups in the P2ABA structure could specifically react with adrenalines. Adrenaline was detected in real time by EC‐SPR spectroscopy, which provides an EC‐SPR reflectivity change on the P2ABA thin film upon adrenaline injection. The measured responses were quite different from those for uric acid and ascorbic acid, which are major interferences in adrenaline detection. The electrochemically applied potential facilitates the specific detection of adrenaline. In addition, the detection of adrenaline on the P2ABA thin films was investigated by a quartz crystal microbalance technique. The detection limit for adrenaline at open circuit potential was 10 pM. The present study provides a useful information on the detection of adrenaline on the P2ABA thin films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
For the first time, cobalt oxide films that are highly protective against localized corrosion and depicting a wide variety of bright and uniform colors due to light interference, have been successfully electrogenerated on polycrystalline cobalt disk electrodes under potentiostatic polarization in a mild aqueous bicarbonate medium. Open circuit potential measurements have shown the formation of a film with a bilayered structure, organized as a thin Co3O4 outer layer and a thick CoO inner layer. The existence of Co3O4 as a thin outer layer, previously postulated from galvanostatic reduction experiments, has been confirmed from XPS analysis. Raman spectroscopy, performed using a very low laser intensity, has shown that the films are mainly composed of CoO. The broadness of the Raman bands observed is associated to the amorphous character of the film, a result that has been confirmed by spectroscopic ellipsometry and X-ray diffraction analysis. Overall film thicknesses, well controlled by the anodization duration, were determined and correlated using mechanical (atomic force microscopy and profilometry) and spectroscopic (specular UV-vis-NIR reflectance and ellipsometry) techniques. Spectroscopic ellipsometry, using a simple amorphous dispersion model, has proved efficient for measuring thicknesses of films ranging from 31 to 290 nm with very low standard deviations. The real part of the complex refractive indices of these films, ranging from 1.8 to 2.2 (at lambda = 632.8 nm) depending on the anodization duration, is in good agreement with values reported in the literature for CoO. The film with the highest refractive index, and consequently the more densely packed structure, was obtained following a 30-minute anodization period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号