首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We synthesized Pt monolayer electrocatalysts for oxygen-reduction using a new method to obtain the supporting core–shell nanoparticles. They consist of a Pt monolayer deposited on carbon-supported Co–Pd core–shell nanoparticles with the diameter of 3–4 nm. The nanoparticles were made using a redox-transmetalation (electroless deposition) method involving the oxidation of Co by Pd cations, yielding a Pd shell around the Co core. The quality of the thus-formed core–shell structure was verified using transmission electron microscopy and X-ray absorption spectroscopy, while cyclic voltammetry was employed to confirm the lack of Co oxidation (dissolution). A Pt monolayer was deposited on the Co–Pd core–shell nanoparticles by the galvanic displacement of a Cu monolayer obtained by underpotential deposition. The total noble metal mass-specific activity of this Pt monolayer electrocatalyst was ca. 3-fold higher than that of commercial Pt/C electrocatalysts.  相似文献   

2.
本文利用欠电位沉积亚单层的Cu及Pt置换取代Cu的方法, 制备了具有不同表面元素组成的Pd/Pt二元合金电极(用Pd/Ptx表示, x指欠电位沉积Cu-Pt置换取代Cu过程的次数),并对其表面元素组成、氧还原性能进行了表征. 在控制欠电位沉积Cu的下限电位恒定(0.34 V)的前提下, 表面Pt/Pd的元素组成比通过重复欠电位沉积Cu及Pt置换取代Cu的次数(1~5次)来可控地调变. 光电子能谱(XPS) 以及红外光谱实验表明,Pd/Ptx电极表层区的Pt:Pd元素组成比随着Pt沉积次数增加而增加, 对Pd/Pt4电极, 在电极表层区约2~3 nm内的Pt/Pd的原子比大约是1:4,而最表层裸露Pd原子的比例仍在20%以上。循环伏安结果显示, 随着Pt沉积次数的增加(1-5次), Pd/Ptx电极表面越不易被氧化。氧还原测试结果显示随着Pt沉积次数的增加(1~4次), Pd/Ptx二元金属电极的氧还原活性依次增加, 经过第3次沉积后其氧还原活性已优于纯Pt,而经4次以上沉积,其氧还原活性基本不变。在其它反应条件相同条件的前提下, Pd/Pt4电极上氧还原的半波电位与纯Pt相比右移约25 mV。结合本文与文献的实验结果,我们初步认为Pd/Ptx二元金属体系氧还原性能改善主要源自表层Pd原子导致其邻近的Pt原子上含氧物种吸附能的降低.  相似文献   

3.
We synthesized a new class of O2 electrocatalysts with a high activity and very low noble metal content. They consist of Pt monolayers deposited on the surfaces of carbon-supported nonnoble metal-noble metal core-shell nanoparticles. These core-shell nanoparticles were formed by segregating the atoms of the noble metal on to the nanoparticles' surfaces at elevated temperatures. A Pt monolayer was deposited by galvanic displacement of a Cu monolayer deposited at underpotentials. The mass activity of all the three Pt monolayer electrocatalysts investigated, viz., Pt/Au/Ni, Pt/Pd/Co, and Pt/Pt/Co, is more than order of magnitude higher than that of a state-of-the-art commercial Pt/C electrocatalyst. Geometric effects in the Pt monolayer and the effects of PtOH coverage, revealed by electrochemical data, X-ray diffraction, and X-ray absorption spectroscopy data, appear to be the source of the enhanced catalytic activity. Our results demonstrated that high-activity electrocatalysts can be devised that contain only a fractional amount of Pt and a very small amount of another noble metal.  相似文献   

4.
The structure characteristics and the electrochemical behavior of Pt(Cu)/C electrocatalysts synthesized by consecutive deposition of copper and platinum on carbon-support microparticles is studied. The stability and catalytic activity of Pt(Cu)/C materials in reactions of oxygen electroreduction and methanol electrooxidation are assessed and compared with analogous characteristics of a commercial Pt/C material. It is shown that combining the method of galvanic displacement of Cu by Pt with the additional chemical deposition of Pt favors optimization of the structure and functional characteristics of Pt(Cu)/C electrocatalysts. The effect of thermal treatment on the characteristics and properties of electrocatalysts is studied and the optimal conditions of such pretreatment are revealed.  相似文献   

5.
Carbon supported Palladium–Nickel alloys with various compositions (Pd–Ni/C) were synthesized by chemical reduction of the co-precipitated Pd and Ni hydroxides on carbon. The structure of these alloys was characterized using X-ray diffraction (XRD) analysis. The catalytic activity of Pd–Ni/C for oxygen reduction reaction (ORR) in alkaline media was studied using a glassy carbon rotating disk electrode (RDE). Pd/C showed ORR activity close to that of Pt/C. The activities of Pd–Ni (3:1)/C and Pd–Ni (1:1)/C were found unchanged compared with that of Pd/C. Ni/C showed about 175 mV lower onset potential than Pt/C, and the activity of Pd–Ni (1:3)/C was observed to be between that of Pd/C and Ni/C.  相似文献   

6.
Electrodeposition of high-surface-area nanoporous Au-Cu foams under conditions of hydrogen codeposition is studied. The honeycomb-like Au(x)Cu(100-x) foams with 0 ≤ x ≤ 100 are electrodeposited by controlling the amount of corresponding ions in the solution. The amount of metal ions in deposited films follows that in used electrolytes. Compared to monometallic foams, the Au(x)Cu(100-x) structures are characterized by smaller ligament or particle sizes (less than 10 nm) and improved stability. The addition of even a small amount of Cu to the Au matrix is found to dramatically improve the stability of the structure in air environment or an acidic medium. Pt@Au(x)Cu(100-x) structures are formed by the galvanic displacement of Cu from Au(x)Cu(100-x) templates. During the displacement of Cu by Pt, Au serves as a buffer, decreasing mechanical stresses and preventing the detachment of the foam from the substrate. The surface ratio of Pt to Au atoms is controlled by adjusting the amount of Cu in the template. Pt@Au(x)Cu(100-x) electrodes are investigated as novel electrocatalysts for methanol oxidation in alkaline media. The Au-enriched surfaces show higher catalytic activity toward methanol oxidation, while the electrodes with a higher amount of Pt are more stable.  相似文献   

7.
Pd black was modified by a very low amount of Pt corresponding to a sub-monolayer (ML). Spontaneous displacement method was employed. The catalysts with 0.02–0.12 ML were characterized by cyclic voltammetry and COads stripping and were tested for HCOOH oxidation under the potentiodynamic and potentiostatic conditions. All the Pt@Pd catalysts were more active for HCOOH oxidation than Pd black. The Pt@Pd with 0.08 ML of Pt exhibited the highest activity with the maximum current density under the potentiodynamic conditions of 8 mA cm?2 (vs. 2.7 mA cm?2 on Pd black). Contrasting HCOOH oxidation kinetics on Pt@Pd and Pt@Au catalysts revealed that the current densities are higher, and the poisoning rate is lower on Pt@Pd catalyst. This was ascribed to an optimal strength of the Pt–adsorbate bond when Pt is supported on Pd and to a possible influence of the Pt atoms on the Pd substrate.  相似文献   

8.
应用电化学去合金法制备了表面覆盖有Pt(Pd)原子层的Pt(Pd)-Cu合金催化剂.研究该催化剂在0.1mol.L-1HClO4酸性溶液中对氧气电化学还原的催化活性,并采用同步辐射反常X-射线衍射法(Anomalous X-ray Diffraction,AXRD)和表面X-射线散射法(Surface X-ray Scattering,SXS)从原子尺度研究了去合金化后催化剂的结构.分析对比纳米颗粒、薄膜和单晶3种不同形式的去合金化Pt-Cu的结构和催化活性以及Pt-Cu和Pd-Cu两种不同合金薄膜的结构和催化活性.结果表明,表面应力是影响催化剂催化活性的关键因素,而应力大小则与去合金化后所形成的表面Pt(Pd)层的厚度相关,材料尺寸和组成元素等都影响表面Pt(Pd)层的厚度.提出可利用调控材料表面的应力来设计高催化活性的催化剂.  相似文献   

9.
分别利用液相热解法和浸渍还原法制备了碳载钯纳米催化剂(Pd/C),并研究了其对氧还原反应的电催化活性。与浸渍还原法相比,液相热解法得到的Pd/C催化剂虽然粒径较大,但表现出较好的氧还原反应(ORR)活性和稳定性.在所制备的Pd/C催化剂基础上,通过置换欠电势沉积的Cu原子单层,获得了Pt单层修饰的Pd/C催化剂,其ORR活性较Pd/C催化剂有显著提高,且与纯Pt/C催化剂接近,而其耐久性则较纯Pt/C催化剂有显著提升,显示出Pt单层催化剂的潜在优势.  相似文献   

10.
Noble metal nanoparticles(Pd,Ag,Pt,Au) with small and relatively uniform sizes were loaded on polydopamine nanospheres through in situ galvanic replacement reaction in aqueous solution.No additional reductant,surfactant or organic solvent was needed.X-ray photoelectron spectroscopy results revealed that the amount of quinone increased,while the amount of phenolic hydroxyl decreased on PDA nanospheres,indicating that the galvanic displacement reaction occurred between catechol groups and noble metal ions.The as-prepared PDA/Pd exhibited high catalytic activity and excellent stability in styrene hydrogenation.Moreover,PDA spheres retains the photo-thermal effect to serve as a nano-sized heater to accelerate the catalytic reactions under near-infrared illumination.  相似文献   

11.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44?mV and 32?mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth.  相似文献   

12.
The pathway of formic acid electrooxidation strongly depends on the amount of three neighbouring Pt or Pd atoms in the surface of Pd- or Pt-based catalysts. Here, Pt decorated Pd/C nanoparticles (the optimal atomic ratio, Pd?:?Pt = 20?:?1) were designed and then synthesized through a facile galvanic replacement reaction where the amount of three neighbouring Pt or Pd atoms markedly decreased. As a result, discontinuous Pd and Pt atoms suppressed CO formation and exhibited unprecedented catalytic activity and stability toward formic acid electrooxidation while the cost was almost the same as that of Pd/C.  相似文献   

13.
We report on the synthesis, characterization, and electrochemical performance of novel, ultrathin Pt monolayer shell-Pd nanowire core catalysts. Initially, ultrathin Pd nanowires with diameters of 2.0 ± 0.5 nm were generated, and a method has been developed to achieve highly uniform distributions of these catalysts onto the Vulcan XC-72 carbon support. As-prepared wires are activated by the use of two distinctive treatment protocols followed by selective CO adsorption in order to selectively remove undesirable organic residues. Subsequently, the desired nanowire core-Pt monolayer shell motif was reliably achieved by Cu underpotential deposition followed by galvanic displacement of the Cu adatoms. The surface area and mass activity of the acid and ozone-treated nanowires were assessed, and the ozone-treated nanowires were found to maintain outstanding area and mass specific activities of 0.77 mA/cm(2) and 1.83 A/mg(Pt), respectively, which were significantly enhanced as compared with conventional commercial Pt nanoparticles, core-shell nanoparticles, and acid-treated nanowires. The ozone-treated nanowires also maintained excellent electrochemical durability under accelerated half-cell testing, and it was found that the area-specific activity increased by ~1.5 fold after a simulated catalyst lifetime.  相似文献   

14.
Monodisperse bimetallic Pd-Cu nanoparticles with controllable size and composition were synthesized by a one-step multiphase ethylene glycol (EG) method. Adjusting the stoichiometric ratio of the Pd and Cu precursors afforded nanoparticles with different compositions, such as Pd(85)-Cu(15), Pd(56)-Cu(44), and Pd(39)-Cu(61). The nanoparticles were separated from the solution mixture by extraction with non-polar solvents, such as n-hexane. Monodisperse bimetallic Pd-Cu nanoparticles with narrow size-distribution were obtained without the need for a size-selection process. Capping ligands that were bound to the surface of the particles were removed through heat treatment when the as-prepared nanoparticles were loaded onto a Vulcan XC-72 carbon support. Supported bimetallic Pd-Cu nanoparticles showed enhanced electrocatalytic activity towards methanol oxidation compared with supported Pd nanoparticles that were fabricated according to the same EG method. For a bimetallic Pd-Cu catalyst that contained 15?% Cu, the activity was even comparable to the state-of-the-art commercially available Pt/C catalysts. A STEM-HAADF study indicated that the formation of random solid-solution alloy structures in the bimetallic Pd(85)-Cu(15)/C catalysts played a key role in improving the electrochemical activity.  相似文献   

15.
甲烷作为一种清洁廉价的碳氢能源,广泛应用于运输业和其它工业领域.但是其本身是一种比二氧化碳导致全球变暖效应更强的温室气体,而且甲烷直接燃烧会产生其它污染物,比如一氧化碳、氮氧化物、未充分燃烧的碳氢化合物等.因此有必要开展有关甲烷催化燃烧的研究工作,以大幅度降低起燃温度,提高燃烧效率,有效地减少污染副产物的产生.由于具有较好的低温催化活性,Pd基催化剂常用于甲烷的催化燃烧.但是Pd基催化剂也存在一些亟需解决的问题,比如在催化燃烧过程中活性相结构不稳定.PdO通常被认为是碳氢化合物催化氧化中的活性相,但是在高温下PdO分解为Pd,导致催化活性下降.PdO遇到含水或硫的化合物时会生成惰性的Pd(OH)2或稳定的硫化物,造成活性物种的流失,从而降低催化剂的性能.如果在材料中添加另一种贵金属Pt,使之与Pd一起形成贵金属合金,则可提高其低温催化燃烧的活性,增加Pd基催化剂的热稳定性以及抗水和抗硫能力.另一方面,过渡金属氧化物价格便宜,热稳定性以及抗硫性较好,也常作为甲烷燃烧的催化剂.其中三氧化二锰由于具有可变的氧化态以及较好的储氧能力受到了广泛关注.本课题组采用KIT-6作为硬模板,先合成具有有序介孔结构的Mn2O3(meso-Mn2O3)纳米催化剂,然后通过聚乙烯醇(PVA)保护的液相共还原法分别制备meso-Mn2O3担载Pd,Pt及PdPt合金的纳米催化剂(x(PdyPt)/meso-Mn2O3;x=(0.10-1.50)wt%;Pd/Pt摩尔比(y)=4.9-5.1).XRD结果表明,合成的meso-Mn2O3具有立方相晶体结构.其BET比表面积为106 m2/g.由TEM照片可观察到粒径范围为2.1?2.8 nm的贵金属纳米颗粒均匀分散在meso-Mn2O3表面.通过XPS分析可知,结合能在529.6和531.2 eV的峰可分别归属于晶格氧(Olat)和表面吸附氧(Oads).Pd0和Pd2+以及Pt0和Pt2+也均可通过曲线拟合后进行分峰确定.XPS定量分析结果表明,样品的Oads/Olat摩尔比有如下顺序:1.41(Pd5.1Pt)/meso-Mn2O3(0.77)>1.40Pd/meso-Mn2O3(0.69)>0.72(Pd5.1Pt)/meso-Mn2O3(0.65)>1.42Pt/meso-Mn2O3(0.63)>0.07(Pd4.9Pt)/meso-Mn2O3(0.53)>0.07(Pd4.9Pt)/bulk-Mn2O3(0.52)>meso-Mn2O3(0.45),这与其催化活性的顺序一相致.该结果表明,高的吸附氧物种浓度有利于甲烷催化燃烧.负载Pd,Pt或PdPt以后的样品的表面吸附氧物种浓度显著提高,催化活性最好的1.41(Pd5.1Pt)/meso-Mn2O3样品具有最高的吸附氧物种浓度.负载PdPt合金可有效提高催化剂对甲烷燃烧的催化活性.1.41(Pd5.1Pt)/meso-Mn2O3催化剂的活性最好:在空速为20000 mL/(g.h)的条件下,甲烷燃烧的T10%,T50%和T90%分别为265,345和425oC.此外,还考察了引入一定量的SO2,CO2,H2O和NO对甲烷在1.41(Pd5.1Pt)/meso-Mn2O3催化剂上氧化反应的影响,发现引入少量的Pt可提高催化剂抗SO2,CO2和H2O的能力,但是NO对甲烷燃烧的还原效应也不可忽视.基于催化剂物化性质的表征结果和活性数据,我们认为1.41(Pd5.1Pt)/meso-Mn2O3优异的催化性能与其拥有高质量的三维有序多孔结构、高的吸附氧物种浓度、优良的低温还原性以及Pd-Pt合金与meso-Mn2O3载体之间的强相互作用有关.  相似文献   

16.
质子交换膜燃料电池Pd修饰Pt/C催化剂的电催化性能   总被引:2,自引:1,他引:2  
吕海峰  程年才  木士春  潘牧 《化学学报》2009,67(14):1680-1684
通过对Pt催化剂表面进行Pd修饰提高质子交换膜燃料电池阴极催化剂的氧还原反应(ORR)活性. 采用乙二醇还原法制备了不同比例的Pd修饰Pt/C催化剂. 透射电镜(TEM)和X射线衍射(XRD)测试结果表明, 制备的催化剂贵金属颗粒粒径主要分布在1.75~2.50 nm之间, 并均匀地分散在碳载体表面. 循环伏安方法(CV)研究表明Pd修饰Pt/C催化剂的电化学活性面积低于传统的Pt/C催化剂. 但通过旋转圆盘电极(RDE)测试研究发现, 制备的催化剂具有比传统Pt/C催化剂高的ORR活性.  相似文献   

17.
18.
The catalytic activity and durability are crucial for the development of high-performance electrocatalysts. To design electrocatalysts with excellent electroactivity and durability, the structure and composition are two important guiding principles. In this work, novel Pt/Ni(OH)2–NiOOH/Pd multi-walled hollow nanorod arrays (MHNRAs) are successfully synthesized. The unique MHNRAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Because of the special surface and synergistic effects, the Pt/Ni(OH)2–NiOOH/Pd MHNRA electrocatalysts exhibit high catalytic activity, high durability and superior CO poisoning tolerance for the electrooxidation of formic acid in comparison with Pt@Pd MHNRAs, commercial Pt/C, Pd/C and PtRu/C catalysts.  相似文献   

19.
The formation of a Pt(Cu) bimetallic catalyst on the carbon support by galvanic displacement of copper electrodeposits with platinum (PtCl 6 2? as the displacing agent) is systematically studied. Composition, structure, and electrocatalytic properties of samples corresponding to different stages of copper displacement are analyzed. For substantially long displacement times, the formation of stable Pt(Cu)st particles with the atomic ratio Pt: Cu ≈ 7: 3 is observed. The Pt(Cu)st/C electrodes are shown to be close to the Pt/C electrode as regards the adsorption of hydrogen and copper atoms and the specific activity in methanol oxidation (with 0.5 M H2SO4 as the supporting electrolyte). Such electrocatalytic behavior of Pt(Cu)st particles makes it possible to infer the formation of the “core(Pt, Cu)-shell(Pt)” structure, as confirmed by the XPS data.  相似文献   

20.
Several g-Al2O3 supported Pd–Ni bimetallic nanocatalysts(Pd–Ni(x:y)/Al2O3; where x and y represent the mass ratio of Pd and Ni, respectively) were prepared by the impregnation method and used for selective hydrogenation of cyclopentadiene to cyclopentene. The Pd–Ni/Al2O3 samples were confirmed to generate Pd–Ni bimetallic nanoparticles by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). The catalytic activity was assessed in view of the effects of different mass ratios of Pd and Ni, temperature, pressure, etc. Among all the samples, the Pd–Ni(1:1)/Al2O3(PN-1:1) catalyst showed extremely high catalytic ability. The conversion of cyclopentadiene and selectivity for cyclopentene can be simultaneously more than 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号