首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surprising transformation of the saturated diamine (iPr)NHCH(2)CH(2)NH(iPr) to the unsaturated diazaethene [(iPr)NCH═CHN(iPr)](2-) via the synergic mixture nBuM, (tBu)(2)Zn and TMEDA (where M = Li, Na; TMEDA = N,N,N',N'-tetramethylethylenediamine) has been investigated by multinuclear NMR spectroscopic studies and DFT calculations. Several pertinent intermediary and related compounds (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2) (3), (TMEDA)Li[(iPr)NCH(2)CH(2)CH(2)N(iPr)]Zn(tBu) (5), {(THF)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (6), and {(TMEDA)Na[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (11), characterized by single-crystal X-ray diffraction, are discussed in relation to their role in the formation of (TMEDA)M[(iPr)NCH═CHN(iPr)]Zn(tBu) (M = Li, 1; Na, 10). In addition, the dilithio zincate molecular hydride [(TMEDA)Li](2)[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)H 7 has been synthesized from the reaction of (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2)3 with nBuLi(TMEDA) and also characterized by both X-ray crystallographic and NMR spectroscopic studies. The retention of the Li-H bond of 7 in solution was confirmed by (7)Li-(1)H HSQC experiments. Also, the (7)Li NMR spectrum of 7 in C(6)D(6) solution allowed for the rare observation of a scalar (1)J(Li-H) coupling constant of 13.3 Hz. Possible mechanisms for the transformation from diamine to diazaethene, a process involving the formal breakage of four bonds, have been determined computationally using density functional theory. The dominant mechanism, starting from (TMEDA)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu) (4), involves the formation of a hydride intermediate and leads directly to the observed diazaethene product. In addition the existence of 7 in equilibrium with 4 through the dynamic association and dissociation of a (TMEDA)LiH ligand, also provides a secondary mechanism for the formation of the diazaethene. The two reaction pathways (i.e., starting from 4 or 7) are quite distinct and provide excellent examples in which the two distinct metals in the system are able to interact synergically to catalyze this otherwise challenging transformation.  相似文献   

2.
Metalation of 2,4,6-tri(methyl)phenol ((Me)ArOH) and 2,6-di(tert-butyl)-4-methylphenol ((Bu)ArOH) with NaN(SiMe(3))(2) in toluene and in the presence of stoichiometric amounts of the polydentate amines N,N,N',N'-tetramethylethylenediamine (TMEDA) and N,N,N',N',N'-pentamethyldiethylenetriamine (PMDETA) affords three new sodium aryloxide complexes [Na(μ-OAr(Bu))(TMEDA)](2) (3), [Na(μ-OAr(Me))(PMDETA)](2) (4), and [Na(OAr(Bu))(PMDETA)] (5). Complexes 3 to 5 have been isolated as crystalline materials in reasonable yields and characterized in the solid state by X-ray crystallography and in solution by NMR spectroscopy. Complexes 3 to 5 and the related [tris(2-dimethylaminoethyl)amine] (Me(6)TREN) derivatives [Na(OAr(Me))(HOAr(Me))(Me(6)TREN)] (1) and [Na(OAr(Bu))(Me(6)TREN)] (2), recently prepared in our group, are shown to be active as initiators for the ring-opening polymerization (ROP) of rac-lactide with benzyl alcohol as a co-initiator. However, during the course of the polymerization reactions intrachain and stereorandom transesterification side-reactions were observed under some of the experimental conditions tested.  相似文献   

3.
Towards a systematic development of the zinc chemistry of the important five-membered nitrogen heterocycle pyrrole, this work reports the synthesis and characterisation of five crystalline zinc-pyrrolyl complexes. Pyrrolyl in this context means where conversion of the N-H bond to an N-zinc bond has occurred. Two neutral complexes, [(t)BuZn(NC(4)H(4))(TMEDA)·HNC(4)H(4)] 1 and [Zn(NC(4)H(4))(2)(TMEDA)] 2, containing one and two pyrrolyl ligands, respectively, were synthesised by reacting di-t-butylzinc with different amounts of pyrrole in the presence of TMEDA (TMEDA is N,N,N',N'-tetramethylethylenediamine). X-ray crystallographic studies established that both adopt mononuclear structures with the salient feature of the former the presence of an additional parent protonated pyrrole molecule which engages its anionic counterpart in N-H…πC-C interactions. Employing a similar synthetic approach but adding n-butylsodium to the reaction mixture in attempts to form ate derivatives delivered three distinct sodium zincate (anionic zinc) compounds in [{(THF)(2)·NaZn(THF)(NC(4)H(4))(3)}(∞)] 3, [{(TMEDA)·Na}(2)Zn(NC(4)H(4))(4)] 4, and [{(PMDETA)·Na}(2)Zn(NC(4)H(4))(4)] 5 (PMDETA is N,N,N',N',N'-pentamethyldiethylenetriamine). From their crystal structures, the 1?:?1, Na:Zn complex 3 can be classified as a lower-order zincate having three pyrrolyl ligands bound to zinc in a polymeric chain arrangement, while the 2?:?1, Na:Zn complexes 4 and 5 are molecular higher-order zincates having Zn centres fully saturated by four pyrrolyl ligands. Discussion of the structures of 1-5 focuses on the interplay of σ-bonding and π-bonding between the pyrrolyl ligands and the metal centres. Revealingly, the zinc-free sodiopyrrole complex [{(PMDETA)·Na(NC(4)H(4))}(2)] 6, made and characterised for comparison, shows that on its own sodium prefers the former type of bonding, but is forced to switch to the latter type when combined with the stronger Lewis acid zinc in the zincate compositions. Complexes 1-6 have also been characterised in solution by NMR spectroscopy.  相似文献   

4.
Lithiated aryl carbamates (ArLi) bearing methoxy or fluoro substituents in the meta position are generated from lithium diisopropylamide (LDA) in THF, n-BuOMe, Me2NEt, dimethoxyethane (DME), N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N'-tetramethylcyclohexanediamine (TMCDA), and hexamethylphosphoramide (HMPA). The aryllithiums are shown with (6)Li, (13)C, and (15)N NMR spectroscopies to be monomers, ArLi-LDA mixed dimers, and ArLi-LDA mixed trimers, depending on the choice of solvent. Subsequent Snieckus-Fries rearrangements afford ArOLi-LDA mixed dimers and trimers of the resulting phenolates. Rate studies of the rearrangement implicate mechanisms based on monomers, mixed dimers, and mixed trimers.  相似文献   

5.
Organolithium compounds play the leading role among the organometallic reagents in synthesis and in industrial processes. Up to date industrial application of methyllithium is limited because it is only soluble in diethyl ether, which amplifies various hazards in large-scale processes. However, most reactions require polar solvents like diethyl ether or THF to disassemble parent organolithium oligomers. If classical bidentate donor solvents like TMEDA (TMEDA= N,N,N',N'tetramethyl-1,2-ethanediamine) or DME (DME=1,2-dimethoxyethane) are added to methyllithium, tetrameric units are linked to form polymeric arrays that suffer from reduced reactivity and/or solubility. In this paper we present two different approaches to tune methyllithium aggregation. In [[(MeLi)4(dem)1,5)infinity] (1; DEM = EtOCH2OEt, diethoxymethane) a polymeric architecture is maintained that forms microporous soluble aggregates as a result of the rigid bite of the methylene-bridged bidentate donor base DEM. Wide channels of 720 pm in diameter in the structure maintain full solubility as they are coated with lipophilic ethyl groups and filled with solvent. In compound 1 the long-range Li3CH3...Li interactions found in solid [[(MeLi)4]infinity] are maintained. A different approach was successful in the disassembly of the tetrameric architecture of [((MeLi)4]infinity]. In the reaction of dilithium triazasulfite both the parent [(MeLi)4] tetramer and the [[Li2[(NtBu)3S]]2] dimer disintegrate and recombine to give an MeLi monomer stabilized in the adduct complex [(thf)3Li3Me-[(NtBu)3S]] (2). One side of the Li3 triangle, often found in organolithium chemistry, is shielded by the tripodal triazasulfite, while the other face is mu3-capped by the methanide anion. This Li3 structural motif is also present in organolithium tetramers and hexamers. All single-crystal structures have been confirmed through solid-state NMR experiments to be the same as in the bulk powder material.  相似文献   

6.
The metathetical reaction of [Li(TMEDA)][HC(PPh(2)Se)(2)] ([Li(TMEDA)]1) with TlOEt in a 1:1 molar ratio afforded a homoleptic Tl(I) complex as an adduct with LiOEt, Tl[HC(PPh(2)Se)(2)]·LiOEt (7), which undergoes selenium-proton exchange upon mild heating (60 °C) to give the mixed-valent Tl(I)/Tl(III) complex {[Tl][Tl{(Se)C(PPh(2)Se)(2)}(2)]}(∞) (8). Treatment of TlOEt with [Li(TMEDA)](2)[(SPh(2)P)(2)CE'E'C(PPh(2)S)(2)] (3b, E' = S; 3c, E' = Se) in a 2:1 molar ratio produced the binuclear Tl(i)/Tl(i) complexes Tl(2)[(SPh(2)P)(2)CE'E'C(PPh(2)S)(2)] (9b, E' = S; 9c, E' = Se), respectively. Selenium-proton exchange also occurred upon addition of [Li(TMEDA)]1 to InCl(3) to yield the heteroleptic complex (TMEDA)InCl[(Se)C(PPh(2)Se)(2)] (10a). Other examples of this class of In(III) complex, (TMEDA)InCl[(E')C(PPh(2)E)(2)] (10b, E = E' = S; 10c, E = S, E' = Se) were obtained via metathesis of InCl(3) with [Li(TMEDA)](2)[(E')C(PPh(2)E)(2)] (2b, E = E' = S; 2c, E = S, E' = Se, respectively). All new compounds have been characterized in solution by (1)H and (31)P NMR spectroscopy and the solid-state structures have been determined for 8, 9c and 10a-c by single-crystal X-ray crystallography. Complex 8 is comprised of Tl(+) ions that are weakly coordinated to octahedral [Tl{(Se)C(PPh(2)Se)(2)}(2)](-) anions to give a one-dimensional polymer. The complex 9c is comprised of two four-coordinate Tl(+) ions that are each S,S',S',Se bonded to the hexadentate [(SPh(2)P)(2)CSeSeC(PPh(2)S)(2)](2-) ligand in which d(Se-Se) = 2.531(2) ?. The six-coordinate In(III) centres in the distorted octahedral complexes 10a-c are connected to a tridentate [(E')C(PPh(2)E)(2)](2-) dianion, a chloride ion and a neutral bidentate TMEDA ligand.  相似文献   

7.
The reaction between {(Me3Si)2CH}PCl2 and one equivalent of [C10H6-8-NMe2]Li, followed by in situ reduction with LiAlH4, gives the secondary phosphane {(Me3Si)2CH}(C10H6-8-NMe2)PH(1) in good yield as a colourless crystalline solid. Metalation of 1 with Bu(n)Li in diethyl ether gives the lithium phosphanide [{[{(Me3Si)2CH}(C10H6-8-NMe2)P]Li}2(OEt2)](2), which undergoes metathesis with either NaOBu(t) or KOBu(t) to give the heavier alkali metal derivatives [[{(Me3Si)2CH}(C10H6-8-NMe2)P]-Na(tmeda)](3) and [[{(Me3Si)2CH}(C10H6-8-NMe2)P]K(pmdeta)](4), after recrystallisation in the presence of the corresponding amine co-ligand [tmeda = N,N,N',N'-tetramethylethylenediamine, pmdeta = N,N,N',N",N"-pentamethyldiethylenetriamine]. Compounds 2-4 have been characterised by 1H, 13C{1H} and 31P{1H} NMR spectroscopy, elemental analyses and X-ray crystallography. Dinuclear 2 crystallises with the phosphanide ligands arranged in a head-to-head fashion and is subject to dynamic exchange in toluene solution; in contrast, compounds 3 and 4 crystallise as discrete monomers which exhibit no dynamic behaviour in solution. DFT calculations on the model compound [{[(Me)(C10H6-8-NMe2)P]Li},(OMe2)] (2a) indicate that the most stable head-to-head form is favoured by 15.0 kcal mol(-1) over the corresponding head-to-tail form.  相似文献   

8.
The reactivity of the Br?nsted basic mixed-metal tris-amide compounds of empirical formula [MMg(N(i)Pr2)3] [where M = Li (1), Na (2)] towards phenylacetylene (HC[triple bond, length as m-dash]CPh) has been investigated and has led to the synthesis of a series of mixed-metal acetylido-amido-magnesiates. Thus, 1 and 2 molar equivalents of the alkyne with [MMg(N(i)Pr2)3] produce heteroanionic bis(amido)-mono(acetylido) [LiMg(N(i)Pr2)2(C[triple bond, length as m-dash]CPh)]2 (3) and mono(amido)-bis(acetylido) [(TMEDA) x Na(C[triple bond, length as m-dash]CPh)2Mg(N(i)Pr2)](2) (4) (TMEDA = N,N,N',N'-tetramethylethylenediamine) respectively. X-Ray crystallographic studies reveal that the new compounds adopt a different structural motif. Complex can be defined as an inverse crown structure, having a cationic eight-atom [(NaNMgN)2]2+ ring which hosts in its core two acetylido ligands. On the other hand, adopts a tetranuclear NaMgMgNa near-linear chain arrangement, held together by acetylido and amido bridges. The metal coordination geometries in both structures are distorted tetrahedral, and the sodium cations at the end of the mixed-metal chain carry terminal chelating TMEDA ligands. 1H and 13C NMR spectral data recorded in C6D6 solutions are also reported for and , and are consistent with the solid-state structures being retained in solution.  相似文献   

9.
6Li and (13)C NMR spectroscopic studies were carried out on [(6)Li]n-BuLi and [(6)Li]PhLi (RLi) in toluene-d(8) containing the following diamines: N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N'-tetraethylethylenediamine, 1,2-dipyrrolidinoethane, 1,2-dipiperidinoethane, N,N,N',N'-tetramethylpropanediamine, trans-(R,R)-N,N,N',N'-tetramethylcyclohexanediamine, and (-)-sparteine. Dimers of general structure (RLi)(2)S(2) (S = chelating diamine) are formed in each case. Treatment of RLi with two different diamines (S and S') affords homosolvates (RLi)(2)S(2) and (RLi)(2)S'(2) along with a heterosolvate (RLi)(2)SS'. Relative binding constants and associated free energies for the sequential solvent substitutions are obtained by competing pairs of diamines. The high relative stabilities of certain heterosolvates indicate that solvent binding to the RLi dimer can be highly correlated. Rate studies of both the 1,2-addition of RLi/TMEDA to the N-isopropylimine of cyclohexane carboxaldehyde and the RLi/TMEDA-mediated alpha-lithiation of the N-isopropylimine of cyclohexanone reveal monomer-based transition structures, [(RLi)(TMEDA)(imine)], in all cases. The complex relationships of solvent binding constants and relative reactivities toward 1,2-additions and alpha-lithiations are discussed.  相似文献   

10.
An extended family of aryl-substituted alkaline earth metal silylamides M{N(2,4,6-Me3C6H2)(SiMe3)}donor(n) was prepared using alkane elimination (Mg), salt elimination (Ca, Sr, Ba), and direct metalation (Sr, Ba). Three different donors, THF, TMEDA (TMEDA = N,N,N',N'-tetramethylethylenediamine), and PMDTA (PMDTA = N,N,N',N',N'-pentamethyldiethylenetriamine) were employed to study their influence on the coordination chemistry of the target compounds, producing monomeric species with the composition M{N(2,4,6-Me3C6H2)(SiMe3)}2(THF)2 (M = Mg, Ca, Sr, Ba), M{N(2,4,6-Me3C6H2)(SiMe3)}2TMEDA (M = Ca, Ba), and M{N(2,4,6-Me3C6H2)(SiMe3)}2PMDTA (M = Sr, Ba). For the heavier metal analogues, varying degrees of agostic interactions are completing the coordination sphere of the metals. Compounds were characterized using IR and NMR spectroscopy in addition to X-ray crystallography.  相似文献   

11.
Tetrahedral FeCl[N(SiMe(3))(2)](2)(THF) (2), prepared from FeCl(3) and 2 equiv of Na[N(SiMe(3))(2)] in THF, is a useful ferric starting material for the synthesis of weak-field iron-imide (Fe-NR) clusters. Protonolysis of 2 with aniline yields azobenzene and [Fe(2)(mu-Cl)(3)(THF)(6)](2)[Fe(3)(mu-NPh)(4)Cl(4)] (3), a salt composed of two diferrous monocations and a trinuclear dianion with a formal 2 Fe(III)/1 Fe(IV) oxidation state. Treatment of 2 with LiCl, which gives the adduct [FeCl(2)(N(SiMe(3))(2))(2)](-) (isolated as the [Li(TMEDA)(2)](+) salt), suppresses arylamine oxidation/iron reduction chemistry during protonolysis. Thus, under appropriate conditions, the reaction of 1:1 2/LiCl with arylamine provides a practical route to the following Fe-NR clusters: [Li(2)(THF)(7)][Fe(3)(mu-NPh)(4)Cl(4)] (5a), which contains the same Fe-NR cluster found in 3; [Li(THF)(4)](2)[Fe(3)(mu-N-p-Tol)(4)Cl(4)] (5b); [Li(DME)(3)](2)[Fe(2)(mu-NPh)(2)Cl(4)] (6a); [Li(2)(THF)(7)][Fe(2)(mu-NMes)(2)Cl(4)] (6c). [Li(DME)(3)](2)[Fe(4)(mu(3)-NPh)(4)Cl(4)] (7), a trace product in the synthesis of 5a and 6a, forms readily as the sole Fe-NR complex upon reduction of these lower nuclearity clusters. Products were characterized by X-ray crystallographic analysis, by electronic absorption, (1)H NMR, and M?ssbauer spectroscopies, and by cyclic voltammetry. The structures of the Fe-NR complexes derive from tetrahedral iron centers, edge-fused by imide bridges into linear arrays (5a,b; 6a,c) or the condensed heterocubane geometry (7), and are homologous to fundamental iron-sulfur (Fe-S) cluster motifs. The analogy to Fe-S chemistry also encompasses parallels between Fe-mediated redox transformations of nitrogen and sulfur ligands and reductive core conversions of linear dinuclear and trinuclear clusters to heterocubane species and is reinforced by other recent examples of iron- and cobalt-imide cluster chemistry. The correspondence of nitrogen and sulfur chemistry at iron is intriguing in the context of speculative Fe-mediated mechanisms for biological nitrogen fixation.  相似文献   

12.
Reaction of HN(PiPr2)2 with one equivalent of selenium in hexane at room temperature yields the monoselenide as the P-H tautomer Se=PiPr2-N=P(H)iPr2 (2b). Deprotonation of 2b with n butyllithium in the presence of TMEDA at -78 degrees C followed by addition of tellurium produces the air-sensitive, mixed chalcogenido complex [(TMEDA)Li(SePiPr2)(TePiPr2)N] (8Li) in >97% purity after recrystallisation. Similarly, deprotonation of Te=PiPr2-N=P(H)iPr2 (2c), followed by addition of sulfur, gives the sulfur analogue [(TMEDA)Li(SPiPr2)(TePiPr2)N] (7Li) in >99% purity. The symmetrical complexes [(TMEDA)Li(SePiPr2)2N] (4Li) and [(TMEDA)Li(TePiPr2)2N] (5Li) are produced by similar methods. Compounds 2b, 4Li, 5Li, 7Li and 8Li were characterised in solution by multinuclear (1H, 31P, 77Se and 125Te) NMR spectroscopy and their solid-state structures were determined by X-ray crystallography. The X-ray crystal structures of the polymeric chains [NaN(EPiPr2)2]infinity (4Na, E = Se and 5Na, E = Te) are also reported.  相似文献   

13.
Yao Y  Zhang Z  Peng H  Zhang Y  Shen Q  Lin J 《Inorganic chemistry》2006,45(5):2175-2183
The synthesis and catalytic activity of lanthanide monoamido complexes supported by a beta-diketiminate ligand are described. Donor solvents, such as DME, can cleave the chloro bridges of the dinuclear beta-diketiminate ytterbium dichloride {[(DIPPh)2nacnac]YbCl(mu-Cl)3Yb[(DIPPh)2nacnac](THF)} (1) [(DIPPh)2nacnac = N,N-diisopropylphenyl-2,4-pentanediimine anion] to produce the monomeric complex [(DIPPh)2nacnac]YbCl2(DME) (2) in high isolated yield. Complex 2 is a useful precursor for the synthesis of beta-diketiminate-ytterbium monoamido derivatives. Reaction of complex 2 with 1 equiv of LiNPri2 in THF at room temperature, after crystallization in THF/toluene mixed solvent, gave the anionic beta-diketiminate-ytterbium amido complex [(DIPPh)2nacnac]Yb(NPri2)(mu-Cl)2Li(THF)2 (3), while similar reaction of complex 2 with LiNPh2 produced the neutral complex [(DIPPh)2nacnac]Yb(NPh2)Cl(THF) (4). Recrystallization of complex 3 from toluene solution at elevated temperature led to the neutral beta-diketiminate-lanthanide amido complex [{(DIPPh)2nacnac}Yb(NPri2)(mu-Cl)]2 (5). The reaction medium has a significant effect on the outcome of the reaction. Complex 2 reacted with 1 equiv of LiNPri2 and LiNC5H10 in toluene to produce directly the neutral beta-diketiminate-lanthanide amido complexes 5 and [{(DIPPh)2nacnac}Yb(NC5H10)(THF)(mu-Cl)]2 (6), respectively. These complexes were well characterized, and their crystal structures were determined. Complexes 4-6 exhibited good catalytic activity for the polymerization of methyl methacrylate and epsilon-caprolactone.  相似文献   

14.
The coordination chemistry of chelating silanedithiolato ligands has been investigated on Fe(II), Co(II), Pd(II), Cu(I), and Ag(I). Treatment of M(OAc)(2) (M = Fe, Co, Pd) with cyclotrisilathiane (SSiMe(2))(3) in the presence of Lewis bases resulted in formation of Fe(S(2)SiMe(2))(PMDETA) (1), Fe(S(2)SiMe(2))(Me(3)TACN) (2), Co(S(2)SiMe(2))(PMDETA) (3), and Pd(S(2)SiMe(2))(PEt(3))(2) (4) (PMDETA = N,N,N',N',N' '-pentamethyldiethylenetriamine; Me(3)TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane). The analogous reactions of M(OAc) (M = Cu, Ag) in the presence of PEt(3) gave rise to the dinuclear complexes M(2)[(SSiMe(2))(2)S](PEt(3))(3) [M = Cu (5), Ag (6)]. Complexes were characterized in solution by (1)H, (31)P[(1)H], and (29)Si[(1)H] NMR and in the solid state by single-crystal X-ray diffraction. Mononuclear complexes 1-3 have a four-membered MS(2)Si ring, and these five-coordinate complexes adopt trigonal-bipyramidal (for the PMDETA adducts) or square-pyramidal (for the Me(3)TACN adduct) geometries. In dimer 6, the (SSiMe(2))(2)S(2)(-) silanedithiolato ligand bridges two metal centers, one of which is three-coordinate and the other four-coordinate. The chelating effect of silanedithiolato ligands leads to an increase in the stability of silylated thiolato complexes.  相似文献   

15.
The oligodentate P,N ligand N,N,N',N'-tetrakis(diphenylphosphanyl)-1,3-diaminobenzene reacts with two equivalents of [{Rh(mu-Cl)(COD)}(2)], [NiBr(2)(DME)] or [PdCl(2)(NCMe)(2)](COD = 1,5-cyclooctadiene, DME = dimethoxyethane) in dichloromethane to give the tetranuclear complex [1,3-{cis-Rh(COD)(mu-Cl)(2)Rh(PPh(2))(2)N}(2)C(6)H(4)](1) or the dinuclear complexes [1,3-{cis-NiBr(2)(PPh(2))(2)N}(2)C(6)H(4)](2) and [1,3-{cis-PdCl(2)(PPh(2))(2)N}(2)C(6)H(4)](3), respectively. Compounds 1-3 were characterised by NMR ((1)H, (13)C, (31)P) and IR spectroscopy. The molecular structure of 2 and 3 shows the formation of a bis-chelate complex with M-P-N-P four-membered rings (M = Pd, Ni). An N,N,N',N'-tetrakis(diphenylphosphanyl)-1,3-diaminobenzene/Pd(OAc)(2) mixture was used for the copolymerisation of carbon monoxide with ethene or ethylidenenorbornene. Compound 1 was employed as catalyst in the hydrogenation of styrene.  相似文献   

16.
Proton, 13C, 6Li, and 15N NMR line-shape studies of exo,exo-1-trimethylsilyl-3-(dimethylethylsilyl)allyllithium-6Li complexed to [14N,15N]-N,N,N',N'-tetramethylethylenediamine (TMEDA) 2 as a function of temperature and of added diamine reveal the dynamics of three fast equilibrium reorganization processes. These are (with DeltaH values in kilocalories per mole and DeltaS values in entropic units): mutual exchange of lithium between two 2 molecules (6.3, -21), exchange of TMEDA between its free and complexed states (5.0 and -22), and first-order transfer of complexed ligand between the allyl faces (7.0 and -20). Intermediates that are dimeric in TMEDA are proposed for the first two of these reorganization processes.  相似文献   

17.
The ambidentate dianions [(t)BuN(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu](2)(-) (5a, E = S; 5b, E = Se) are obtained as their disodium and dipotassium salts by the reaction of cis-[(t)Bu(H)N(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (6a, E = S; 6b, E = Se), with 2 equiv of MN(SiMe(3))(2) (M = Na, K) in THF at 23 degrees C. The corresponding dilithium derivative is prepared by reacting 6a with 2 equiv of (t)BuLi in THF at reflux. The X-ray structures of five complexes of the type [(THF)(x)()M](2)[(t)BuN(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu] (9, M = Li, E = S, x = 2; 11a/11b, M = Na, E = S/Se, x = 2; 12a, M = K, E = S, x = 1; 12b, M = K, E = Se, x = 1.5) have been determined. In the dilithiated derivative 9 the dianion 5a adopts a bis (N,S)-chelated bonding mode involving four-membered LiNPS rings whereas 11a,b and 12a,b display a preference for the formation of six-membered MNPNPN and MEPNPE rings, i.e., (N,N' and E,E')-chelation. The bis-solvated disodium complexes 11a,b and the dilithium complex 9 are monomeric, but the dipotassium complexes 12a,b form dimers with a central K(2)E(2) ring and associate further through weak K.E contacts to give an infinite polymeric network of 20-membered K(6)E(6)P(4)N(4) rings. The monoanions [(t)Bu(H)N(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu)](-) (E = S, Se) were obtained as their lithium derivatives 8a and 8b by the reaction of 1 equiv of (n)BuLi with 6a and 6b, respectively. An X-ray structure of the TMEDA-solvated complex 8a and the (31)P NMR spectrum of 8b indicate a N,E coordination mode. The reaction of 6b with excess (t)BuLi in THF at reflux results in partial deselenation to give the monolithiated P(III)/P(V) complex [(THF)(2)Li[(t)BuN(Se)P(mu-N(t)Bu)(2)PN(H)(t)Bu]] 10, which adopts a (N,Se) bonding mode.  相似文献   

18.
The reaction of ((t)BuNH)(3)PNSiMe(3) (1) with 1 equiv of (n)BuLi results in the formation of Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] (2); treatment of 2 with a second equivalent of (n)BuLi produces the dilithium salt Li(2)[P(NH(t)Bu)(N(t)Bu)(2)(NSiMe(3))] (3). Similarly, the reaction of 1 and (n)BuLi in a 1:3 stoichiometry produces the trilithiated species Li(3)[P(N(t)Bu)(3)(NSiMe(3))] (4). These three complexes represent imido analogues of dihydrogen phosphate [H(2)PO(4)](-), hydrogen phosphate [HPO(4)](2)(-), and orthophosphate [PO(4)](3)(-), respectively. Reaction of 4 with alkali metal alkoxides MOR (M = Li, R = SiMe(3); M = K, R = (t)Bu) generates the imido-alkoxy complexes [Li(3)[P(N(t)Bu)(3)(NSiMe(3))](MOR)(3)] (8, M = Li; 9, M = K). These compounds were characterized by multinuclear ((1)H, (7)Li, (13)C, and (31)P) NMR spectroscopy and, in the cases of 2, 8, and 9.3THF, by X-ray crystallography. In the solid state, 2 exists as a dimer with Li-N contacts serving to link the two Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] units. The monomeric compounds 8 and 9.3THF consist of a rare M(3)O(3) ring coordinated to the (LiN)(3) unit of 4. The unexpected formation of the stable radical [(Me(3)SiN)P(mu(3)-N(t)Bu)(3)[mu(3)-Li(THF)](3)(O(t)Bu)] (10) is also reported. X-ray crystallography indicated that 10 has a distorted cubic structure consisting of the radical dianion [P(N(t)Bu)(3)(NSiMe(3))](.2)(-), two lithium cations, and a molecule of LiO(t)Bu in the solid state. In dilute THF solution, the cube is disrupted to give the radical monoanion [(Me(3)SiN)((t)BuN)P(mu-N(t)Bu)(2)Li(THF)(2)](.-), which was identified by EPR spectroscopy.  相似文献   

19.
The amidohydridometalates [Li(THF)4][HAl(NPh2)3] (1), [Li(DME)3][HAl(N(CH2Ph)2)3] (2), and [((THF)3Li)-(H2Al(NcHex2)2)].0.5toluene (3.0.5toluene; cHex = C6H11) have been prepared by reaction of the corresponding amines with LiAlH4 in THF. For 2 recrystallization from DME is required to obtain crystals, suitable for X-ray diffraction. The new compounds have been characterized by elemental analyses, IR, NMR, and MS techniques, and X-ray structure analyses. According to this the anions of 1, 2, and 3x0.5toluene possess distorted tetrahedral coordination spheres. In 3x0.5toluene a Li...H contact of 184(4) pm was detected to complete the tetrahedral coordination of the Li+ center.  相似文献   

20.
The redox chemistry of tellurium-chalcogenide systems is examined via reactions of tellurium(IV) tetrachloride with Li[(t)()BuN(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (3a, E = S; 3b, E = Se). Reaction of TeCl(4) with 2 equiv of 3a in THF generates the tellurium(IV) species TeCl(3)[HcddS(2)][H(2)cddS(2)] 4a [cddS(2) = (t)BuN(S)P(mu-N(t)Bu)(2)P(S)N(t)Bu] at short reaction times, while reduction to the tellurium(II) complex TeCl(2)[H(2)cddS(2)](2) 5a is observed at longer reaction times. The analogous reaction of TeCl(4) and 3b yields only the tellurium(II) complex TeCl(2)[H(2)cddSe(2)](2) 5b. The use of 4 equiv of 3a or 3b produces Te[HcddE(2)](2) (6a (E = S) or 6b (E = Se)). NMR and EPR studies of the 5:1 reaction of 3a and TeCl(4) in THF or C(6)D(6) indicate that the formation of the Te(II) complex 6a via decomposition of a Te(IV) precursor occurs via a radical process to generate H(2)cddS(2). Abstraction of hydrogen from THF solvent is proposed to account for the formation of 2a. These results are discussed in the context of known tellurium-sulfur and tellurium-nitrogen redox systems. The X-ray crystal structures of 4a.[C(7)H(8)](0.5), 5a, 5b, 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) have been determined. The cyclodiphosph(V)azane dichalcogenide ligand chelates the tellurium center in an E,N (E = S, Se) manner in 4a.[C(7)H(8)](0.5), 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) with long Te-N bond distances in each case. Further, a neutral H(2)cddS(2) ligand weakly coordinates the tellurium center in 4a small middle dot[C(7)H(8)](0.5) via a single chalcogen atom. A similar monodentate interaction of two neutral ligands with a TeCl(2) unit is observed in the case of 5a and 5b, giving a trans square planar arrangement at tellurium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号