首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Understanding the mechanism of electroweak symmetry breaking and the origin of boson and fermion masses is among the most pressing questions raised in contemporary particle physics. If these issues involve one (several) Higgs boson(s), a precise measurement of all its (their) properties will be of prime importance. Among those, the Higgs coupling to matter fermions (the Yukawa coupling). At a linear collider, the process e+e-→tt̄H will allow a direct measurement of the top-Higgs Yukawa coupling. We present a realistic feasibility study of the measurement in the context of the TESLA collider. Four channels are studied and the analysis is repeated for several Higgs mass values within the range 120–200 GeV/c 2. PACS 13.66.Jn; 14.65.Ha; 14.80.Bn  相似文献   

2.
We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan β and m A . We observe that at fixed CM energy, in the SM, the total cross-section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM. The changes that occur for the MSSM in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross-section. The observed deviations in cross-section for different choices of Higgs boson masses suggest that the measurements of the cross-section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.   相似文献   

3.
The recent LHC indications of a SM-like Higgs boson near 125 GeV are consistent not only with the Standard Model (SM) but also with Supersymmetry (SUSY). However naturalness arguments disfavour the Minimal Supersymmetric Standard Model (MSSM). We consider the Next-to-Minimal Supersymmetric Standard Model (NMSSM) with a SM-like Higgs boson near 125 GeV involving relatively light stops and gluinos below 1 TeV in order to satisfy naturalness requirements. We are careful to ensure that the chosen values of couplings do not become non-perturbative below the grand unification (GUT) scale, although we also examine how these limits may be extended by the addition of extra matter to the NMSSM at the two-loop level. We then propose four sets of benchmark points corresponding to the SM-like Higgs boson being the lightest or the second lightest Higgs state in the NMSSM or the NMSSM-with-extra-matter. With the aid of these benchmark points we discuss how the NMSSM Higgs boson near 125 GeV may be distinguished from the SM Higgs boson in future LHC searches.  相似文献   

4.
As one of the key properties of the Higgs boson, the Higgs total width is sensitive to the global profile of the Higgs boson couplings, and thus new physics would modify the Higgs width. We investigate the total width in various new physics models, including various scalar extensions, composite Higgs models, and the fraternal twin Higgs model. Typically, the Higgs width is smaller than the standard model value due to mixture with other scalars if the Higgs is elementary, or curved Higgs field space for the composite Higgs. On the other hand, except for the possible invisible decay mode, the enhanced Yukawa coupling in the two Higgs doublet model or the exotic fermion embeddings in the composite Higgs could enhance the Higgs width greatly. The precision measurement of the Higgs total width at the high-luminosity LHC can be used to discriminate certain new physics models.  相似文献   

5.
In one of our previous papers,we provided general,effective Higgs interactions for the lightest Higgs boson h(SM-like) and a heavier neutral Higgs boson H based on the effective Lagrangian formulation up to the dim-6 interactions,and then proposed two sensitive processes for probing H.We showed in several examples that the resonance peak of H and its dim-6 effective coupling constants(ECC) can be detected at LHC Run 2 with reasonable integrated luminosity.In this paper,we further perform a more thorough study of the most sensitive process,pp →VH*→VVV,providing information about the relations between the 1σ,3σ,5σ statistical significance and the corresponding ranges of the Higgs ECC for an integrated luminosity of 100 fb~(-1).These results have two useful applications in LHC Run 2:(A) realizing the experimental determination of the ECC in the dim-6 interactions if H is found and,(B) obtaining the theoretical exclusion bounds if H is not found.Some alternative processes sensitive for certain ranges of the ECC are also analyzed.  相似文献   

6.
Nowadays, in the MSSM, the moderate values of tan β are almost excluded by the LEP II lower bound on the mass of the lightest Higgs boson. In the next-to-minimal supersymmetric standard model (NMSSM), the theoretical upper bound on it increases and reaches a maximal value in the limit of strong Yukawa coupling, where all solutions to renormalization-group equations are concentrated near the quasifixed point. For a calculation of the Higgs boson spectrum, the perturbation-theory method can be applied. We investigate the particle spectrum within the modified NMSSM, which leads to the self-consistent solution in the limit of strong Yukawa coupling. This model allows one to get m h~125 GeV at tan β≥1.9. In the model under investigation, the mass of the lightest Higgs boson does not exceed 130.5±3.5 GeV. The upper bound on the mass of the lightest CP-even Higgs boson in more complicated supersymmetric models is also discussed.  相似文献   

7.
We consider a spontaneously broken gauge theory based on the standard model (SM) group with scalar fields that carry arbitrary representations of G, and we investigate some general properties of the charged and neutral current involving these fields. In particular we derive the conditions for having real or complex couplings of the Z boson to two different neutral or charged scalar fields, and for the existence of CP-violating Z-scalar-scalar couplings. Moreover, we study models with the same fermion content as in the SM, with one SU(2) Higgs singlet, and an arbitrary number of Higgs doublets. We show that the structure of the Z-Higgs boson and of the Yukawa couplings in these models can be such that CP-violating form factors which conserve chirality are induced at the one-loop level. Received: 18 December 1998 / Published online: 22 March 1999  相似文献   

8.
We investigate the one-loop contributions to the mass of the SM-like Higgs boson in the MSSM considering the effect of slepton flavor mixing, which is parametrized by the dimensionless parameter δXY (X,Y=L,R) in the slepton mass matrices. For the surviving samples under the experimental constraints, we calculate the corrections to the mass of the SM-like Higgs boson in terms of δXY. We find that the mass correction Δmh can even be larger than 10 GeV for large δRL or δLR. Moreover, Δmh has strong sensitivity to δRL or δLR, while the weak sensitivity to δLL or δRR, since δRL or δLR enters directly into the coupling of Higgs boson with sleptons in the calculations of Higgs boson self-energies.  相似文献   

9.
We explore a scenario in the Standard Model in which dimension-four Yukawa couplings are forbidden by a symmetry, and the Yukawa interactions are dominated by effective dimension-six interactions. In this case, the Higgs interactions to the fermions are enhanced in a large way, whereas its interaction with the gauge bosons remains the same as in the Standard Model. In hadron colliders, Higgs boson production via gluon-gluon fusion increases by a factor of nine. Higgs decay widths to fermion-antifermion pairs also increase by the same factor, whereas the decay widths to photon-photon and γZ are reduced. Current Tevatron exclusion range for the Higgs mass increases to ∼146-222 GeV in our scenario, and new physics must appear at a scale below a TeV.  相似文献   

10.
The Elementary Goldstone Higgs(EGH) model is a perturbative extension of the standard model(SM),which identifies the EGH boson as the observed Higgs boson. In this paper, we study pair production of the EGH boson via gluon fusion at the LHC and find that the resonant contribution of the heavy scalar is very small and the SM-like triangle diagram contribution is strongly suppressed. The total production cross section mainly comes from the box diagram contribution and its value can be significantly enhanced with respect to the SM prediction.  相似文献   

11.
We consider the two-Higgs-doublet model with explicit CP-violation, where the effective Higgs potential is not CP-invariant at the tree level. The three neutral Higgs bosons of the model are the mixtures of CP-even and CP-odd bosons which exist in the CP-conserving limit of the theory. The mass spectrum and tree-level couplings of the neutral Higgs bosons to gauge bosons and fermions are significantly dependent on the parameters of the Higgs boson mixing matrix. We calculate the Higgs-gauge boson, Higgs-fermion, triple and quartic Higgs self-interactions in the MSSM with explicit CP-violation in the Higgs sector and CP-violating Yukawa interactions of the third generation scalar quarks. In some regions of the MSSM parameter space substantial changes of the self-interaction vertices take place, leading to significant suppression or enhancement of the multiple Higgs boson production cross sections. Received: 13 June 2002 / Revised version: 20 November 2002 / Published online: 14 March 2003  相似文献   

12.
When the charged Higgs boson is too heavy to be produced in pairs, the predominant production mechanism at linear colliders is via the single charged Higgs boson production processes, such as e(-)e(+)-->bcH+,taunuH+ and gammagamma-->bcH+,taunuH+. We show that the yield of a heavy charged Higgs boson at a gammagamma collider is typically 1 or 2 orders of magnitude larger than that at an e(-)e(+) collider. Furthermore, a polarized gammagamma collider can determine the chirality of the Yukawa couplings of fermions with charged Higgs boson via single charged Higgs boson production and, thus, discriminate models of new physics.  相似文献   

13.
We calculate the Yukawa corrections of order to charged Higgs boson production in association with a top quark at the Tevatron and the LHC. The corrections are not very sensitive to the mass of the charged Higgs boson and can exceed for low values of , where the contribution of the top quark is large, and high values of where the contribution of the bottom quark becomes large. These Yukawa corrections could be significant for charged Higgs boson searches based on this production process, particularly at the LHC where the cross section is relatively large. Received: 12 October 1999 / Revised version: 3 December 1999 / Published online: 6 April 2000  相似文献   

14.
If Lorentz symmetry is violated at high energies, interactions that are usually non-renormalizable can become renormalizable by weighted power counting. Recently, a CPT invariant, Lorentz violating extension of the Standard Model containing two scalar-two fermion interactions (which can explain neutrino masses) and four fermion interactions (which can explain proton decay) was proposed. In this paper we consider a variant of this model, obtained suppressing the elementary scalar fields, and argue that it can reproduce the known low-energy physics. In the Nambu–Jona-Lasinio spirit, we show, using a large N c expansion, that a dynamical symmetry breaking takes place. The effective potential has a Lorentz invariant minimum and the Lorentz violation does not reverberate down to low energies. The mechanism generates fermion masses, gauge-boson masses and scalar bound states, to be identified with composite Higgs bosons. Our approach is not plagued by the ambiguities of approaches based on non-renormalizable vertices. The low-energy effective action is uniquely determined and predicts relations among parameters of the Standard Model.  相似文献   

15.
The recent discovery of a new boson at the LHC, which resembles a SM-like Higgs boson with m h =125 GeV, is starting to provide strong guidelines into SUSY model building. For instance, the identification of such a state with the lightest CP-even Higgs boson of the MSSM (h 0), requires large values of tanβ and/or heavy sfermions. One outcome of this result is the possibility to solve the SUSY flavor and CP problems by decoupling, which points towards some realization of Split-inspired SUSY scenarios, in which scalars are much heavier than gauginos and higgsinos. However, we argue here that the remaining Higgs bosons of the MSSM (H 0, A 0, H ±) do not have to be as heavy as the sfermions, and having them with masses near the EW scale does not pose any conflict with current MSSM constraints. We discuss then some SUSY scenarios with heavy sfermions, from a bottom-up approach, which contain the full Higgs sector, as well as a possible dark matter candidate, with masses near the EW scale, and identify distinctive signals from these scenarios that could be searched at the LHC.  相似文献   

16.
If the Higgs boson mass is greater than 350 GeV, the top quark Yukawa coupling can be determined using the Higgs resonant contribution to t&tmacr; production from W+W- fusion at high energy e(+)e(-) linear colliders. We have evaluated the significance with which the signal of a Higgs decaying to t&tmacr; pairs could be observed at future e(+)e(-) colliders, with center of mass energies of 800 GeV and 1 TeV, and an integrated luminosity of 1 ab(-1). We find that a signal significance greater than 5sigma and a relative error in the top Yukawa measurement better than 10% can be achieved at these facilities, for Higgs boson masses in the ranges of 350-500 GeV and 350-650 GeV, respectively.  相似文献   

17.
We study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC with \(\sqrt{s} = 500\) GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling \(g_\chi \) is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator \(H_2\). The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for \(g_\chi \) approaching the perturbative limit, benchmark points with the mediator \(H_2\) in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising.  相似文献   

18.
The quark mass matrices ansätze proposed by Fritzsch, Du–Xing and Fukuyama–Nishiura in the framework of the general two Higgs doublet model are studied. The corresponding Yukawa matrices in the flavor basis in the various cases considered are discussed. The corresponding Cabibbo–Kobayashi–Maskawa matrix elements are computed in all cases and compared with their experimental values. The complex phases of the ansätze are taken into account, and the CP violating phase δ is computed. Finally, in order to observe the influence of the various kinds of texture of the Yukawa coupling matrices considered, some issues in the phenomenology of the two body decays of the top quark, the lightest Higgs boson and the charged Higgs boson are discussed.  相似文献   

19.
The mass-generation mechanism is the most urgent problem of modern particle physics. The discovery and study of the Higgs boson with the Large Hadron Collider at CERN are the highest priority steps to solve the problem. In this paper, the Standard Model Higgs mechanism of elementary particle mass generation is reviewed with pedagogical details. The discussion of the Higgs quadric self-coupling λ parameter and the bounds to the Higgs boson mass are presented. In particular, the unitarity, triviality, and stability constraints on the Higgs boson mass are discussed. The generation of a finite value for the λ parameter due to quantum corrections via effective potential is illustrated. Some simple predictions for the top quark and the Higgs boson masses are given when both the top Yukawa coupling and the Higgs self-coupling λ are equal to 1. The text was submitted by the authors in English.  相似文献   

20.
The radion is a scalar particle that occurs in brane world models and interacts with the trace of the energy–momentum tensor of the Standard Model (SM). The radion–SM fermion interaction Lagrangian differs from the Higgs boson–fermion interaction Lagrangian for off-shell fermions. It is shown that all additional, as compared to the Higgs boson, contributions to the amplitudes of radion production and decay processes involving off-shell fermions are canceled out for both massless and massive fermions. Thus, additional terms in the interaction Lagrangian do not change properties of these processes for the radion and the Higgs boson, except for the general normalization factors. This similarity is a consequence of gauge invariance for the processes with production of gauge bosons. When an additional scalar particle is produced, there are no apparent reasons for the above cancellation, as confirmed, for example, by the process with production of two scalar particles, which features an additional contribution of the radion in comparison with the Higgs boson.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号